Закон сохранения массы в химии. Открытие закона

Закон сохранения массы и энергии

В ядерных реакциях изменения энергии столь значительны, что эквивалентностью массы и энергии уже нельзя пренебречь. Если следить за изменением одной только массы, кажется, что закон сохранения нарушается.

Чтобы убедиться в этом, рассмотрим соотношение между массой и энергией в единицах атомной шкалы масс. Тогда в уравнение е = тс 2 будет входить не 1 г масссы, а масса 1 по атомной весовой шкале, приблизительно равная весу ядра атома водорода-1, самого легкого из известных атомных ядер. В действительности масса 1 по атомной шкале равна 1,67· 10 -24 г.

Несмотря на громадную величину с 2 , энергия, которой эквивалентна такая ничтожная масса, составляет только 0,0015 эрг.

В обычных повседневных масштабах 0,0015 эрг действительно величина небольшая, но по атомной шкале она равна примерно одному миллиарду электронвольт - это уже внушительная цифра. По данным последних измерений, масса 1 по шкале атомных весов эквивалентна 0,931478 Гэв или 931,478 Мэв.

Если положить массу ядра водорода равной 1,00797, она будет эквивалентна энергии 0,938 905 Бэв, а масса четырех таких ядер водорода эквивалентна энергии 3,75562 Гэв. С другой стороны, масса ядра гелия, равная 4,00280 по шкале атомных весов, эквивалентна энергии 3,72803 Гэв. Когда четыре ядра водорода превращаются в одно ядро гелия, потеря массы, следовательно, составляет 0,02759 Гэв или 27,59 Мэв. Измеренная величина выделяющейся при этой реакции энергии оказалась очень близка к теоретической. Исследования показали, что во всех ядерных реакциях такого типа выделенная энергия соответствует исчезнувшей массе согласно уравнению Эйнштейна. В результате стало привычным говорить не о законе сохранения только массы или только энергии, а о законе сохранения массы и энергии. Однако можно говорить просто о законе сохранения энергии, имея в виду, что масса есть форма энергии. Именно так я буду поступать в дальнейшем.

Вернемся теперь к источнику солнечной энергии. Если действительно она возникает за счет превращения ядер водорода в гелий, колоссальная энергия, которая при этом образуется и излучается в окружающее пространство, должна быть сбалансирована эквивалентным исчезновением массы.

Суммарная энергия излучения Солнца, как я уже говорил, равна 5,6· 10 27 кал/мин, что эквивалентно 3,8· 10 33 эрг/сек. Поделив на с 2 , получим, что излучение этой

энергии эквивалентно потере 4,2· 10 12 г в 1 сек , или 276 000 000 т в 1 мин.

По метеоритной теории солнечного излучения, каждую минуту на Солнце попадает 1,2· 10 20 г метеоритного вещества. Такая постоянная добавка к солнечной массе уменьшает продолжительность каждого года на две секунды. Потеря массы при превращении водорода в гелий составляет примерно одну тридцатимиллионную прироста массы, требующегося по метеоритной теории. В результате потери солнечной массы за счет ядерных реакций год увеличился бы только на одну секунду за пятнадцать миллионов лет. Изменение длины года трудно обнаружить, и оно не имеет для нас практического значения.

Из книги Нейтрино - призрачная частица атома автора Азимов Айзек

Глава 4. Связь массы и энергии Несохранение массы Новое представление о строении атома укрепило уверенность физиков в том, что законы сохранения применимы не только к окружающему нас повседневному миру, но и к тому огромному миру, который изучают астрономы. Но

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

СОХРАНЕНИЕ МАССЫ И ЭНЕРГИИ 1.2. Существуют два принципа, ставшие краеугольными камнями здания современной науки. Первый принцип материя не создается и не уничтожается и лишь переходит из одного вида в другой был высказан в XVIII веке и знаком каждому изучающему химию; он

Из книги Курс истории физики автора Степанович Кудрявцев Павел

ЭКВИВАЛЕНТНОСТЬ МАССЫ И ЭНЕРГИИ 1.4. Один из выводов, полученных на довольно ранней стадии развития теории относительности, состоял в том, что инертная масса движущегося тела увеличивается с возрастанием его скорости. Это означало эквивалентность изменения энергии

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Приложение 2. Единицы массы, заряда и энергии МАССА Так как протон и нейтрон являются основными частицами, из которых состоят ядра, казалось бы естественным массу одной из них принять за единицу массы. Выбор, вероятно, пал бы на протон, ядро атома водорода. Существуют

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Открытие закона сохранения и превращения энергии. В.И.Ленин указывал, что развитие познания совершается по спирали. Наступает время, когда наука возвращается к идеям, однажды уже высказанным. Но это возвращение совершается на новом, более высоком уровне, которому

Из книги Вечный двигатель - прежде и теперь. От утопии - к науке, от науки - к утопии автора Бродянский Виктор Михайлович

Закон сохранения массы Если растворить сахар в воде, то масса раствора будет строго равна сумме масс сахара и воды.Этот и бесчисленное количество подобных опытов показывают, что масса тела есть неизменное свойство. При любом дроблении и при растворении масса остается

Из книги Атомная проблема автора Рэн Филипп

Закон сохранения импульса Произведение массы тела на его скорость называется импульсом тела (другое название – количество движения). Так как скорость – вектор, то и импульс является векторной величиной. Разумеется, направление импульса совпадает с направлением

Из книги 1. Современная наука о природе, законы механики автора Фейнман Ричард Филлипс

Закон сохранения механической энергии Мы убедились на только что рассмотренных примерах, как полезно знать величину, не изменяющую свое численное значение (сохраняющуюся) при движении.Пока мы знаем такую величину лишь для одного тела. А если в поле тяжести движется

Из книги автора

Закон сохранения вращательного момента Если связать два камня веревкой и с силой бросить один из них, то второй камень полетит вдогонку за первым на натянутой веревке. Один камень будет обгонять второй, перемещение вперед будет сопровождаться вращением.Забудем про поле

Из книги автора

ТРЕТЬЯ ПРОБЛЕМА: КАК УВЕЛИЧИТЬ СИЛУ УСКОРЕНИЯ ЧЕЛОВЕЧЕСКОЙ МАССЫ - ИСПОЛЬЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ Из трех возможных решений главной проблемы увеличения человеческой энергии разобрать эту важнее всего. Не только из-за ее собственного значения, но и из-за лежащих в ее

Из книги автора 2.1. Поиск общей причины неудач с ppm. «Закон сохранения силы» Последние два века описанного в гл. 1 периода истории ppm (XVII и XVIII вв.) характерны тем, что многие даже достаточно серьезные ученые верили, в то, что вечный двигатель можно создать. Даже постоянные неудачи

Из книги автора

Из книги автора

III. Закон взаимосвязи массы и энергии 1. Формула Эйнштейна.Мы знаем, что существует закон сохранения массы: «Ничто в природе не пропадает бесследно и не создается из ничего, все превращается». С другой стороны, известно, что есть закон сохранения энергии. Энергия

Из книги автора

Глава 10 ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА § 1. Третий закон Ньютона§ 2. Закон сохранения импульса§3. Импульс все-таки сохраняется§ 4. Импульс и энергия§ 5. Реляти­вистский импульс§ 1. Третий закон НьютонаВторой закон Ньютона, который связывает ускорение любого тела с действующей на

После доказательства существования атомов и молекул самым важным открытием стал закон сохранения массы, который был сформулирован в виде философской концепции великим русским ученым Михаилом Васильевичем Ломоносовым (1711-1765) в 1748 г. и подтвержден экспериментально им самим в 1756 г. и независимо от него французским химиком А.Л. Лавуазье в 1789 г.

I Масса всех веществ, вступающих в химическую реакцию, равна. массе всех продуктов реакции.

Опыты по сжиганию веществ, которые проводились до Ломоносова, наводили на мысль о том, что в процессе реакции изменяется (не сохраняется) масса вещества (материи). Вот как проводились опыты до Ломоносова. При нагревании на воздухе ртуть превращалась в красную окалину (оксид ртути, как мы знаем), масса продукта была больше исходной массы ртути. Масса золы при сгорании дерева, напротив, всегда меньше массы исходного вещества. Немецкий врач и химик Георг Эрнст Шталь (1659-1734) пытался объяснить изменения тем, что горючие вещества содержат некую субстанцию - флогистон (от греческого флоги- стос - горючий), которая в процессе горения улетучивается или передается от одного вещества другому. Это означало, что горение вещества есть реакция разложения на флогистон и негорючий остаток. Но тогда получалось, что есть положительный флогистон (содержится в дереве), который приводит к уменьшению массы при горении, и отрицательный (в металлах), который дает увеличение массы после реакции.

Ломоносов провел простой опыт, который показал, что горение металла есть реакция присоединения, а увеличение массы металла происходит в результате присоединения части воздуха. При прокаливании металлов в запаянном стеклянном сосуде он обнаружил, что по окончании реакции масса сосуда не изменилась. Более того, после вскрытия сосуда туда устремлялся воздух - и масса сосуда увеличивалась. Таким образом, закон сохранения массы был сформулирован благодаря аккуратному измерению массы ВСЕХ участников реакции.

| Масса веществ при химической реакции сохраняется.

К сожалению, как это не раз случалось за последние 250 лет, открытие русского ученого не было замечено зарубежными учеными. Закон сохранения массы утвердился в химии только после аккуратных и тщательно обоснованных опытов Лавуазье, который проводил реакции сжигания металлов и восстановления оксидов металлов углем и ни в одном случае не обнаружил уменьшения или увеличения массы продуктов реакции по сравнению с исходными веществами.

Закон сохранения массы имел огромное значение для атомно-молекулярной теории. Он подтвердил, что атомы неделимы и при химических реакциях не изменяются. Молекулы при реакции обмениваются атомами, но общее число атомов каждого вида не изменяется, и поэтому общая масса веществ в процессе реакции сохраняется.

Закон сохранения массы - частный случай общего закона природы - закона сохранения энергии.

| Энергия изолированной системы постоянна.

Движение и взаимодействия различных видов материи сопровождаются изменением энергии, но при любых процессах в изолированной системе энергия не производится и не уничтожается, а только переходит из одной формы в другую. Например, энергия электромагнитного излучения, действующего на молекулу, может переходить в энергию вращательного движения атомов или поступательного движения молекулы; напротив, энергия, освобождаемая или потребляемая при химической реакции, может переходить в энергию излучения.

Одной из форм энергии является так называемая энергия покоя, которая связана с массой соотношением Эйнштейна

где с - скорость света в вакууме (с = 3 10 8 м/с). Это соотношение показывает, что масса может переходить в энергию и наоборот. Именно это и происходит при ядерных реакциях, и поэтому закон сохранения массы в ядерных процессах нарушается. Однако закон сохранения энергии остается справедливым и в этом случае, если учитывать энергию покоя.

При химических реакциях изменение массы, вызванное выделением или поглощением энергии, очень мало. Тепловой эффект любой химической реакции составляет по порядку величины ~100 кДж/моль. Посчитаем, как при этом изменяется масса:

Такое малое изменение массы трудно зарегистрировать экспериментально (хотя и возможно). Поэтому можно утверждать, что в химических реакциях закон сохранения массы выполняется практически точно.

· Упругость · Пластичность · Закон Гука · Реология · Вязкоупругость

Закон сохранения массы - закон физики , согласно которому масса физической системы сохраняется при всех природных и искусственных процессах.

Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.

Ранее Эмпедокла «принцип сохранения» применялся представителями Милетской школы для формулировки теоретических представлений о первовеществе, основе всего сущего.

Позже аналогичный тезис высказывали Демокрит , Аристотель и Эпикур (в пересказе Лукреция Кара). Средневековые учёные также не высказывали никаких сомнений в истинности этого закона. В 1630 году Жан Рэ (Jean Rey, 1583-1645), доктор из Перигора, писал Мерсенну :

Вес настолько тесно привязан к веществу элементов, что, превращаясь из одного в другой, они всегда сохраняют тот же самый вес.

Все встречающиеся в природе изменения происходят так, что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого. Так, сколько материи прибавляется к какому-либо телу, столько же теряется у другого, сколько часов я затрачиваю на сон, столько же отнимаю от бодрствования и т. д.

В дальнейшем, вплоть до создания физики микромира, закон сохранения массы считался истинным и очевидным. Иммануил Кант объявил этот закон постулатом естествознания (1786). Лавуазье в «Начальном учебнике химии» (), приводит точную количественную формулировку закона сохранения массы вещества, однако не объявляет его каким-то новым и важным законом, а просто упоминает мимоходом как о хорошо известном и давно установленном факте. Для химических реакций Лавуазье сформулировал закон так :

Ничто не творится ни в искусственных процессах, ни в природных, и можно выставить положение, что во всякой операции [химической реакции] имеется одинаковое количество материи до и после, что качество и количество начал остались теми же самыми, произошли лишь перемещения, перегруппировки. На этом положении основано всё искусство делать опыты в химии.

Другими словами, сохраняется масса закрытой физической системы , в которой происходит химическая реакция, а сумма масс всех веществ, вступивших в эту реакцию, равна сумме масс всех продуктов реакции (то есть тоже сохраняется). Масса считается аддитивной.

Современное состояние

В XX веке обнаружились два новых свойства массы.

(M1 ) Масса физического объекта зависит от его внутренней энергии (см. Эквивалентность массы и энергии). При поглощении внешней энергии масса растёт, при потере - уменьшается. Отсюда следует, что масса сохраняется только в изолированной системе , то есть при отсутствии обмена энергией с внешней средой. Особенно ощутимо изменение массы при ядерных реакциях . Но даже при химических реакциях, которые сопровождаются выделением (или поглощением) тепла, масса не сохраняется, хотя в этом случае дефект массы ничтожен. Академик Л. Б. Окунь пишет:

Чтобы подчеркнуть, что масса тела меняется всегда, когда меняется его внутренняя энергия, рассмотрим два обыденных примера:
1) при нагревании железного утюга на 200° его масса возрастает на величину ;
2) при полном превращении некоторого количества льда в воду .

(M2 ) Масса не является аддитивной величиной: масса системы не равна сумме масс её составляющих. Примеры неаддитивности:

  • Электрон и позитрон , каждый из которых обладает массой, могут аннигилировать в фотоны , не имеющие массы поодиночке, а обладающие ею только как система.
  • Масса дейтрона , состоящего из одного протона и одного нейтрона , не равна сумме масс своих составляющих, поскольку следует учесть энергию взаимодействия частиц.
  • При термоядерных реакциях, происходящих внутри Солнца, масса водорода не равна массе получившегося из него гелия.
  • Особенно яркий пример: масса протона (≈938 МэВ) в несколько десятков раз больше массы составляющих его кварков (около 11 МэВ).

Таким образом, при физических процессах, которые сопровождаются распадом или синтезом физических структур, не сохраняется сумма масс составляющих (компонентов) системы, но сохраняется общая масса этой (изолированной) системы:

  • Масса системы получившихся при аннигиляции фотонов равна массе системы, состоящей из аннигилирующих электрона и позитрона.
  • Масса системы, состоящей из дейтрона (с учётом энергии связи), равна массе системы, состоящей из одного протона и одного нейтрона отдельно.
  • Масса системы, состоящей из получившегося при термоядерных реакциях гелия, с учётом выделенной энергии, равна массе водорода.

Сказанное означает, что в современной физике закон сохранения массы тесно связан с законом сохранения энергии и выполняется с таким же ограничением - надо учитывать обмен системы энергией с внешней средой.

Более детально

Чтобы более детально пояснить, почему масса в современной физике оказывается неаддитивной (масса системы не равна - вообще говоря - сумме масс компонент), следует вначале заметить, что под термином масса в современной физике понимается лоренц-инвариантная величина :

где - энергия , - импульс , - скорость света . И сразу заметим, что это выражение одинаково легко применимо к точечной бесструктурной («элементарной») частице, так и к любой физической системе, причём в последнем случае энергия и импульс системы вычисляются просто суммированием энергий и импульсов компонент системы (энергия и импульс - аддитивны).

  • Можно попутно заметить также, что вектор импульса-энергии системы - это 4-вектор , то есть его компоненты преобразуются при переходе к другой системе отсчета в соответствии с преобразованиями Лоренца , поскольку так преобразуются его слагаемые - 4-векторы энергии-импульса составляющих систему частиц. А поскольку масса, определённая выше, есть длина этого вектора в Лоренцевой метрике, то она оказывается инвариантной (лоренц-инвариантной), то есть не зависит от системы отччета, в которой ее измеряют или рассчитывают.

Кроме того, заметим, что - универсальная константа, то есть просто число, которое не меняется никогда, поэтому в принципе можно выбрать такую систему единиц измерения, чтобы выполнялось , и тогда упомянутая формула будет менее загромождена:

как и остальные связанные с нею формулы (и мы ниже будем для краткости использовать именно такую систему единиц).

Рассмотрев уже самый парадоксальный на вид случай нарушения аддитивности массы - случай, когда система нескольких (для простоты ограничимся двумя) безмассовых частиц (например фотонов) может иметь ненулевую массу, легко увидеть механизм, порождающий неаддитивность массы.

Пусть есть два фотона 1 b 2 с противоположными импульсами: . Масса каждого фотона, как известно, равна нулю, следовательно можно записать:

то есть энергия каждого фотона равна модулю его импульса. Заметим попутно, что масса равна нулю за счет вычитания под знаком корня ненулевых величин друг из друга.

Рассмотрим теперь систему этих двух фотонов как целое, посчитав ее импульс и энергию. Как видим, импульс этой системы равен нулю (импульсы фотонов, сложившись, уничтожились, так как эти фотоны летят в противоположных направлениях) :

.

Энергия же нашей физической системы будет просто суммой энергий первого и второго фотона:

Ну и отсюда масса системы:

(импульсы уничтожились, а энергии сложились - они не могут быть разного знака).

В общем случае всё происходит аналогично этому, наиболее отчётливому и простому примеру. Вообще говоря, частицы, образующие систему, не обязательно должны иметь нулевые массы, достаточно, чтобы массы были малы или хотя бы сравнимы с энергиями или импульсами , и эффект будет большим или заметным. Также видно, что точной аддитивности массы нет практически никогда, за исключением лишь достаточно специальных случаев.

Масса и инертность

Отсутствие аддитивности массы, казалось бы, вносит затруднения. Однако они искупаются не только тем, что определённая так (а не иначе, например, не как энергия деленная на квадрат скорости света) масса оказывается лоренц-инвариантной, удобной и формально красивой величиной, но и имеет физический смысл, точно соответствующий обычному классическому пониманию массы как меры инертности.

А именно для системы отстчета покоя физической системы (то есть той системы отсчета, в которой импульс физической системы ноль) или систем отсчета, в которых система покоя медленно (по сравнению со скоростью света) движется, упомянутое выше определение массы

Полностью соответствует классической ньютоновской массе (входит во второй закон Ньютона).

Это можно конкретно проиллюстрировать, рассмотрев систему, снаружи (для внешних взаимодействий) являющейся обычным твердым телом, а внутри содержащую быстро движущиеся частицы. Например, рассмотрев зеркальный ящик с идеально отражающими стенками, внутри которого - фотоны (электромагнитные волны).

Пусть для простоты и большей четкости эффекта сам ящик (почти) невесом. Тогда, если, как в рассмотренном в параграфе выше примере, суммарный импульс фотонов внутри ящика ноль, то ящик будет в целом неподвижен. При этом он должен под действием внешних сил (например если мы станем его толкать), вести себя как тело с массой, равной суммарной энергии фотонов внутри, деленной на .

Рассмотрим это качественно. Пусть мы толкаем ящик, и он приобрел из-за этого некоторую скорость вправо. Будем для простоты сейчас говорить только об электромагнитных волнах, бегущих строго вправо и влево. Электромагнитная волна, отражающаяся от левой стенки, повысит свою частоту (вследствие эффекта Допплера) и энергию. Волна, отражающаяся от правой стенки, напротив, уменьшит при отражении свои частоту и энергию, однако суммарная энергия увеличится, так как полной компенсации не будет. В итоге тело приобретет кинетическую энергию , равную (если ), что означает, что ящик ведет себя как классическое тело массы . Тот же результат можно (и даже легче) получить для отражения (отскока) от стенок быстрых релятивистских дискретных частиц (для нерелятивистских тоже, но в этом случае масса просто окажется суммой масс частиц, находящихся в ящике).

Примечания

Литература

  • Джеммер М. Понятие массы в классической и современной физике . - М.: Прогресс, 1967. (Переиздание: Едиториал УРСС, 2003, ISBN 5-354-00363-6)
  • Окунь Л. Б. Понятие массы (Масса, энергия, относительность). Успехи физических наук, № 158 (1989).
  • Спасский Б. И. История физики . - М .: Высшая школа, 1977.
    • Том 1: часть 1-я часть 2-я
    • Том 2: часть 1-я часть 2-я

Wikimedia Foundation . 2010 .

Смотреть что такое "Закон сохранения массы" в других словарях:

    ЗАКОН СОХРАНЕНИЯ МАССЫ - фундаментальный закон нерелятивистской ньютоновской механики, согласно которому масса вещества, поступающего в замкнутую систему, либо накапливается в ней, либо покидает ее, т. е. масса поступающего в систему вещества минус масса выходящего из… … Экологический словарь

Системы. В отличие от классической модели, сохраняется масса только изолированной физической системы , то есть при отсутствии энергообмена с внешней средой. Не сохраняется сумма масс компонентов системы (масса неаддитивна). Например, при радиоактивном распаде в изолированной системе, состоящей из вещества и радиации, совокупная масса вещества уменьшается, но масса системы сохраняется, несмотря на то что масса радиации может быть нулевая.

Исторический очерк

Закон сохранения массы исторически понимался как одна из формулировок закона сохранения материи . Одним из первых его сформулировал древнегреческий философ Эмпедокл (V век до н. э.) :

Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.

Ранее Эмпедокла «принцип сохранения» применялся представителями Милетской школы для формулировки теоретических представлений о первовеществе, основе всего сущего . Позже аналогичный тезис высказывали Демокрит , Аристотель и Эпикур (в пересказе Лукреция Кара).

Средневековые учёные также не высказывали никаких сомнений в истинности этого закона. Фрэнсис Бэкон в 1620 году провозгласил: «Сумма материи остается всегда постоянной и не может быть увеличена или уменьшена… ни одна мельчайшая её часть не может быть ни одолена всей массой мира, ни разрушена совокупной силой всех агентов, ни вообще как-нибудь уничтожена» .

Вес настолько тесно привязан к веществу элементов, что, превращаясь из одного в другой, они всегда сохраняют тот же самый вес.

Оригинальный текст (фр.)

La pesanteur est si étroitement jointe à la première matière des éléments que, se changeant de l"un en l"autre, ils gardent toujours le même poids.

Все встречающиеся в природе изменения происходят так, что если к чему-либо нечто прибавилось, то это отнимается у чего-то другого. Так, сколько материи прибавляется к какому-либо телу, столько же теряется у другого, сколько часов я затрачиваю на сон, столько же отнимаю от бодрствования и т. д.

В СССР на основании этой фразы М. В. Ломоносова объявили автором закона сохранения массы, хотя он никогда не претендовал на такой приоритет и в своём «Обзоре важнейших открытий» данный закон не упоминает. Современные историки подобные претензии считают безосновательными . Ошибочно мнение, что закон сохранения массы был Ломоносовым доказан опытным путём ;

Всеобщий закон сформулирован Ломоносовым на основе общефилософских материалистических соображений, никогда не подвергался им сомнению или проверке, а напротив, служил ему твёрдой исходной позицией во всех исследованиях на всём протяжении его жизни.

В дальнейшем, вплоть до создания физики микромира, закон сохранения массы считался истинным и очевидным. Иммануил Кант объявил этот закон постулатом естествознания (1786). Лавуазье в «Начальном учебнике химии» (1789) привёл точную количественную формулировку закона сохранения массы вещества, однако не объявил его каким-то новым и важным законом, а просто упомянул мимоходом как давно известный и достоверно установленный факт. Для химических реакций Лавуазье сформулировал закон в следующих выражениях :

Ничто не творится ни в искусственных процессах, ни в природных, и можно выставить положение, что во всякой операции [химической реакции] имеется одинаковое количество материи до и после, что качество и количество начал остались теми же самыми, произошли лишь перемещения, перегруппировки. На этом положении основано всё искусство делать опыты в химии.

Другими словами, сохраняется масса закрытой физической системы , в которой происходит химическая реакция, а сумма масс всех веществ, вступивших в эту реакцию, равна сумме масс всех продуктов реакции (то есть тоже сохраняется). Масса, таким образом, считается аддитивной.

Современное состояние

В XX веке обнаружились два новых свойства массы.

(M1 ) Масса физического объекта зависит от его внутренней энергии (см. Эквивалентность массы и энергии). При поглощении внешней энергии масса растёт, при потере - уменьшается. Отсюда следует, что масса сохраняется только в изолированной системе , то есть при отсутствии обмена энергией с внешней средой. Особенно ощутимо изменение массы при ядерных реакциях . Но даже при химических реакциях, которые сопровождаются выделением (или поглощением) тепла, масса не сохраняется, хотя в этом случае дефект массы ничтожен. Академик Л. Б. Окунь пишет :

Чтобы подчеркнуть, что масса тела меняется всегда, когда меняется его внутренняя энергия, рассмотрим два обыденных примера:

1) при нагревании железного утюга на 200° его масса возрастает на величину Δ m / m ≈ 10 − 12 {\displaystyle \Delta m/m\approx 10^{-12}} ; 2) при полном превращении некоторого количества льда в воду Δ m / m ≈ 3.7 ⋅ 10 − 12 {\displaystyle \Delta m/m\approx 3.7\cdot 10^{-12}} .

(M2 ) Масса не является аддитивной величиной: масса системы не равна сумме масс её составляющих. Примеры неаддитивности:

  • Электрон и позитрон , каждый из которых обладает массой, могут аннигилировать в фотоны , не имеющие массы поодиночке, а обладающие ею только как система.
  • Масса дейтрона , состоящего из одного протона и одного нейтрона , не равна сумме масс своих составляющих, поскольку следует учесть энергию взаимодействия частиц.
  • При термоядерных реакциях, происходящих внутри Солнца, масса водорода не равна массе получившегося из него гелия.
  • Особенно яркий пример: масса протона (≈938 МэВ) в несколько десятков раз больше массы составляющих его кварков (около 11 МэВ).

Таким образом, при физических процессах, которые сопровождаются распадом или синтезом физических структур, не сохраняется сумма масс составляющих (компонентов) системы, но сохраняется общая масса этой (изолированной) системы:

  • Масса системы получившихся при аннигиляции фотонов равна массе системы, состоящей из аннигилирующих электрона и позитрона.
  • Масса системы, состоящей из дейтрона (с учётом энергии связи), равна массе системы, состоящей из одного протона и одного нейтрона отдельно.
  • Масса системы, состоящей из получившегося при термоядерных реакциях гелия, с учётом выделенной энергии, равна массе водорода.

Сказанное означает, что в современной физике закон сохранения массы тесно связан с законом сохранения энергии и выполняется с таким же ограничением - надо учитывать обмен системы энергией с внешней средой.

Дорелятивистская физика знала два фундаментальных закона сохранения, а именно:закон сохранения энергии и закон сохранения массы; оба эти фундаментальных закона считались совершенно независимыми друг от друга. Теория относительности слила их в один .

Более детально

Чтобы более детально пояснить, почему масса в современной физике оказывается неаддитивной (масса системы не равна - вообще говоря - сумме масс компонент), следует вначале заметить, что под термином масса в современной физике понимается лоренц-инвариантная величина :

m = E 2 / c 4 − p 2 / c 2 , {\displaystyle m={\sqrt {E^{2}/c^{4}-p^{2}/c^{2}}},}

где E {\displaystyle E} - энергия , p → {\displaystyle {\vec {p}}} - импульс , c {\displaystyle c} - скорость света . И сразу заметим, что это выражение одинаково легко применимо к точечной бесструктурной («элементарной») частице, так и к любой физической системе, причём в последнем случае энергия и импульс системы вычисляются просто суммированием энергий и импульсов компонент системы (энергия и импульс - аддитивны).

  • Можно попутно заметить также, что вектор импульса-энергии системы - это 4-вектор , то есть его компоненты преобразуются при переходе к другой системе отсчета в соответствии с преобразованиями Лоренца , поскольку так преобразуются его слагаемые - 4-векторы энергии-импульса составляющих систему частиц. А поскольку масса, определённая выше, есть длина этого вектора в Лоренцевой метрике , то она оказывается инвариантной (лоренц-инвариантной), то есть не зависит от системы отсчёта, в которой её измеряют или рассчитывают.

Кроме того, заметим, что c {\displaystyle c} - универсальная константа, то есть просто число, которое не меняется никогда, поэтому в принципе можно выбрать такую систему единиц измерения, чтобы выполнялось c = 1 {\displaystyle c=1} , и тогда упомянутая формула будет менее загромождена:

m = E 2 − p 2 , {\displaystyle m={\sqrt {E^{2}-p^{2}}},}

как и остальные связанные с нею формулы (и мы ниже будем для краткости использовать именно такую систему единиц).

Рассмотрев уже самый парадоксальный на вид случай нарушения аддитивности массы - случай, когда система нескольких (для простоты ограничимся двумя) безмассовых частиц (например фотонов) может иметь ненулевую массу, легко увидеть механизм, порождающий неаддитивность массы.

Пусть есть два фотона 1 и 2 с противоположными импульсами: p → 1 = − p → 2 {\displaystyle {\vec {p}}_{1}=-{\vec {p}}_{2}} . Масса каждого фотона равна нулю, следовательно можно записать:

0 = E 1 2 − p 1 2 , {\displaystyle 0={\sqrt {E_{1}^{2}-p_{1}^{2}}},} 0 = E 2 2 − p 2 2 , {\displaystyle 0={\sqrt {E_{2}^{2}-p_{2}^{2}}},}

то есть энергия каждого фотона равна модулю его импульса. Заметим попутно, что масса равна нулю за счет вычитания под знаком корня ненулевых величин друг из друга.

Рассмотрим теперь систему этих двух фотонов как целое, посчитав её импульс и энергию. Как видим, импульс этой системы равен нулю (импульсы фотонов, сложившись, уничтожились, так как эти фотоны летят в противоположных направлениях) :

p → = p → 1 + p → 2 = 0 → . {\displaystyle {\vec {p}}={\vec {p}}_{1}+{\vec {p}}_{2}={\vec {0}}.} .

Энергия же нашей физической системы будет просто суммой энергий первого и второго фотона:

E = E 1 + E 2 . {\displaystyle E=E_{1}+E_{2}.}

Ну и отсюда масса системы:

m = E 2 − p 2 = E 2 − 0 = E ≠ 0 , {\displaystyle m={\sqrt {E^{2}-p^{2}}}={\sqrt {E^{2}-0}}=E\neq 0,}

(импульсы уничтожились, а энергии сложились - они не могут быть разного знака).

В общем случае всё происходит аналогично этому, наиболее отчётливому и простому примеру. Вообще говоря, частицы, образующие систему, не обязательно должны иметь нулевые массы, достаточно, чтобы массы были малы или хотя бы сравнимы с энергиями или импульсами , и эффект будет большим или заметным. Также видно, что точной аддитивности массы нет практически никогда, за исключением лишь достаточно специальных случаев.

Масса и инертность

Отсутствие аддитивности массы, казалось бы, вносит затруднения. Однако они искупаются не только тем, что определённая так (а не иначе, например, не как энергия деленная на квадрат скорости света) масса оказывается лоренц-инвариантной, удобной и формально красивой величиной, но и имеет физический смысл, точно соответствующий обычному классическому пониманию массы как меры инертности.

А именно для системы отсчёта покоя физической системы (то есть той системы отсчета, в которой импульс физической системы ноль) или систем отсчёта, в которых система покоя медленно (по сравнению со скоростью света) движется, упомянутое выше определение массы

m = E 2 / c 4 − p 2 / c 2 {\displaystyle m={\sqrt {E^{2}/c^{4}-p^{2}/c^{2}}}}

Полностью соответствует классической ньютоновской массе (входит во второй закон Ньютона).

Это можно конкретно проиллюстрировать, рассмотрев систему, снаружи (для внешних взаимодействий) являющейся обычным твердым телом, а внутри содержащую быстро движущиеся частицы. Например, рассмотрев зеркальный ящик с идеально отражающими стенками, внутри которого - фотоны (электромагнитные волны).

Пусть для простоты и большей четкости эффекта сам ящик (почти) невесом. Тогда, если, как в рассмотренном в параграфе выше примере, суммарный импульс фотонов внутри ящика ноль, то ящик будет в целом неподвижен. При этом он должен под действием внешних сил (например если мы станем его толкать), вести себя как тело с массой, равной суммарной энергии фотонов внутри, деленной на c 2 {\displaystyle c^{2}} .

Рассмотрим это качественно. Пусть мы толкаем ящик, и он приобрел из-за этого некоторую скорость вправо. Будем для простоты сейчас говорить только об электромагнитных волнах, бегущих строго вправо и влево. Электромагнитная волна, отражающаяся от левой стенки, повысит свою частоту (вследствие эффекта Доплера) и энергию. Волна, отражающаяся от правой стенки, напротив, уменьшит при отражении свои частоту и энергию, однако суммарная энергия увеличится, так как полной компенсации не будет. В итоге тело приобретет кинетическую энергию , равную m v 2 / 2 {\displaystyle mv^{2}/2} (если v << c {\displaystyle v<), что означает, что ящик ведет себя как классическое тело массы m {\displaystyle m} . Тот же результат можно (и даже легче) получить для отражения (отскока) от стенок быстрых релятивистских дискретных частиц (для нерелятивистских тоже, но в этом случае масса просто окажется

Материал из Юнциклопедии


Настоящая наука отличается от произвольных наблюдений и случайных опытов тем, что научный результат всегда воспроизводим. Если ученый сообщил, в каких условиях воздействие на системы вызывает определенный результат, можно получить тот же результат, поставив другой опыт при тех же условиях.

Для химических экспериментов особое значение имеет соблюдение определенного температурного режима, чистоты исходных веществ, концентраций и порядка проведения реакции. При этом обычно предполагается, что объект иссследования находится в той же инерционной системе (т. е. движется в пространстве с той же постоянной скоростью).

При проведении опытов химики используют основной закон природы - закон сохранения массы веществ: сумма масс исходных соединений равна сумме масс продуктов химической реакции. Первая общая формулировка этого закона была дана М. В. Ломоносовым в 1748-1760 гг.: «Все перемены, в натуре встречающиеся, такого суть состояния, что сколько чего у одного тела отнимется, столько присовокупится к другому. Сей всеобщий естественный закон

простирается и в самые правила движения». В 70-х гг. того же века французский химик А. Лавуазье на основе многочисленных экспериментов доказал закон сохранения массы. А в 1840 г. основатель термохимии профессор Петербургского горного института Г. И. Гесс сформулировал закон сохранения энергии для химических реакций: «Тепловой эффект любой химической реакции зависит лишь от начального и конечного состояния системы и не зависит от промежуточных состояний и путей перехода».

Но можно ли применять эти законы, если реакция идет не в инерционных условиях? Например, как учесть соотношение масс и энергий космической ракеты, летящей в иную галактику, и газов, вылетающих из сопел ее двигателей (или фотонов, мезонов и т. д.)? В этом случае придется пользоваться более общим выражением закона сохранения массы веществ и энергии по уравнению А. Эйнштейна:

Где Е - энергия тела, m - его масса, v - скорость движения, с - скорость света в вакууме, равная 300 000 км/с.

В земных условиях (особенно при проведении химических реакций при нормальных температуре и давлении) изменение массы настолько ничтожно, что мы его просто-напросто не можем обнаружить. Поэтому в лабораторной и производственной практике на каждом шагу пользуются законом сохранения массы веществ в его классической форме.

Поделиться: