Подготовка к изучению дробей: делимость и разложение на простые множители. Правила записи при делении столбиком

Разделы: Математика

Класс: 6

Цели урока :
1. Образовательные: повторение, обобщение и проверка знаний по теме: «Делимость натуральных чисел »; выработка основных навыков.
2. Развивающие: развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
3. Воспитательные: посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.
Задачи урока:
Формировать умения применять понятие делителей и кратных; развивать мышление и элементы творческой деятельности; применять признаки делимости в простейших ситуациях; нахождение НОД и НОК чисел, развивать наблюдательность и логическое мышление.
Тип урока – комбинированный.
Форма урока – урок с компьютерной поддержкой.
Оборудование:
1. Доска и мел.
2. Компьютер и проектор.
3. Бумажный вариант всех заданий.

Ход урока.

Числа правят миром.
Пифагор.
1. Организационный момент.
2. Сообщение цели урока.
3. Актуализация опорных знаний.
1. Что называется делителем числа а ?
2. Что называется кратным числа а ?
3. Существует ли наибольшее кратное число?
4. Сформулировать признаки делимости?
5. Какие числа называются простыми, а какие составными?
(Сообщение учащихся о Пифагоре, о Эратосфене, о Евклиде)

Исторические сведения:

Евклид – древнегреческий ученый (365 – 300 г до н.э). О жизни этого великого ученого известно очень мало. Он жил и трудился в Александрии, городе, основанном Александром Македонским. С именем Евклида связано много легенд. Одна из них рассказывает, что царь Птолемей спросил Евклида: « Нет ли более короткого пути к познанию геометрии?», - на что ученый ответил: « Нет царской дороги в геометрию!». Евклид много занимался теорией чисел: именно он доказал, что простых чисел бесконечно много. Алгоритм нахождения НОД двух чисел, называется алгоритмом Евклида.
Древнегреческий математик Евклид в свой книге « Начала», которая была на протяжении двух тысяч лет основным учебником математики, доказал, что простых чисел бесконечно много, т.е. за каждым простым числом есть еще более простое число.
Пифагор (6 век до н.э.) и его ученики изучили вопрос о делимости чисел. Число равное сумме всех его делителей (без самого числа) , они назвали совершенным числом.
Например число 6 (6 = 1 + 2 + 3) , 28 (28 = 1 + 2 + 4 + 7 + 14) совершенные.
Следующие совершенные числа 496, 8128, 33550336
Пифагорейцы знали только первые три совершенных числа. Четвертое 8128 стало известно в І веке до н.э.
Пятое число 33550336 было найдено в 15 веке.
К 1983 г. Было известно уже 27 совершенных чисел. Но до сих пор ученые не знают, есть ли нечетное совершенное число, есть ли самое большое совершенное число. Интерес древних математиков к простым числам связан с тем, что любое натуральное число, больше 1 , либо простое число, либо может быть составлено в виде произведения простых чисел: 14 = 2∙ 7, 16 = 2∙2 ∙2∙2
Возникает вопрос: существует ли последнее (самое большое) простое число?

Задача: Задумано простое число. Следующее за ним натуральное число тоже простое. О каких числах идет речь?
Ответ: 2,3.
6. Какие числа называются взаимно простыми?
7. Объяснить, как найти НОД (НОК) двух чисел.
(Сообщение учащегося о нахождении НОД двух чисел)
Однажды числа 24 и 60 поспорили о том, как им найти НОД. Число 24 утверждало, что сначала надо найти среди всех делителей общие числа, а потом выбрать из них наибольшее число. А число 60 возражало:
- Ну что ты! Мне такой способ не нравится. У меня слишком много делителей, и при их перечислении я могу пропустить какой-нибудь. А вдруг он окажется наибольшим? Нет мне такой способ не нравится. И решили они обратиться за помощью к магистру ДЕЛЕНЧЕСКИХ наук. И магистр им ответил:
- Да 24, твой способ нахождения НОД чисел можно использовать, но это не всегда удобно. А можно найти НОД по-другому.
Нужно 24 и 60 разложить на простые множители.

24 2
12 2
6 2
3 3
1
60 2
30 2
15 3
5 5
1

24 = 2³ ∙ 3
60 = 2² ∙ 3 ∙ 5
Нужно взять общие делители чисел с меньшим показателем степени.
НОД (24;60) = 2² ∙ 3 = 12.

А чтобы найти НОК двух чисел нужно:

  1. Разложить на простые множители;
  2. Выписать все простые множители, которые входят в первое число и во второе число с наибольшим показателем степени.

Значит:
24 = 2³ ∙ 3 60 = 2² ∙ 3 ∙ 5 НОК (24;60) = 2³∙ 3 ∙ 5 = 120.

На этом уроке вы повторите все, что знаете об арифметических действиях. Вам уже известны четыре арифметических действия: сложение, вычитание, умножение, деление. Также на этом уроке мы рассмотрим все правила, связанные с ними, и способы проверки вычислений. Вы узнаете о свойствах сложения и умножения, рассмотрите особые случаи различных арифметических действий.

Сложение обозначают знаком «+». Выражение, в котором числа соединены знаком «+», называют суммой. Каждое число имеет название: первое слагаемое, второе слагаемое. Если выполнить действие сложения, то получим значение суммы.

Например, в выражении:

Это первое слагаемое, - второе слагаемое.

Значит, значение суммы равно .

Вспомним особые случаи сложения c числом 0:

Если одно из двух слагаемых равно нулю, то сумма равна другому слагаемому.

Найдите значение суммы:

Решение

Если одно из двух слагаемых равно нулю, то сумма равна другому слагаемому, поэтому получаем:

1.

2.

Ответ: 1. 237; 2. 541.

Повторим два свойства сложения.

Переместительное свойство сложения : от перестановки слагаемых сумма не изменяется.

Например:

Сочетательное свойство сложения : два соседних слагаемых можно заменять их суммой.

Например:

Используя эти два свойства, слагаемые можно переставлять и группировать любыми способами.

Вычислить удобным способом:

Решение

Рассмотрим слагаемые этого выражения. Определим, есть ли такие, при сложении которых получится круглое число.

Воспользуемся переместительным свойством сложения - переставим второе и третье слагаемое.

Воспользуемся группировкой первого и второго слагаемых, третьего и четвертого слагаемых.

Ответ: 130.

Вычитание обозначают знаком «-». Числа, соединенные знаком минус, образуют разность.

Каждое число имеет название. Число, из которого вычитают, называется уменьшаемым. Число, которое вычитают, называется вычитаемым.

Если выполнить действие вычитание, то получим значение разности.

Если один из двух множителей равен единице, то значение произведение равно другому множителю.

Если один из множителей равен нулю, то значение произведения равно нулю.

Если из числа вычесть ноль, то получится число, из которого вычитали.

Если уменьшаемое и вычитаемое равны, то разность равна нулю.

Вычислите удобным способом:

Решение

В первом выражении из числа вычитают ноль. Соответственно, получится число, из которого вычитали.

1.

Во втором выражении уменьшаемое и вычитаемое равны, соответственно, разность равна нулю.

2.

Ответ: 1. 1864; 2. 0.

Известно, что сложение и вычитание - это взаимообратные действия.

Выполните проверку вычислений:

1.

2.

Решение

Проверим, верно ли выполнено сложение. Известно, что если из значения суммы вычесть значение одного из слагаемых, то получится другое слагаемое. Вычтем из значения суммы первое слагаемое:

Сравним полученный результат со вторым слагаемым. Числа одинаковые. Значит, вычисления были выполнены верно.

Также можно было вычесть из значения суммы второе слагаемое.

Сравним полученный результат с первым слагаемым. Числа равны, значит, вычисления выполнены верно.

Проверим, верно ли выполнено вычитание. Известно, если к значению разности прибавить вычитаемое, то получится уменьшаемое. Прибавим к значению разности вычитаемое:

Полученный результат и уменьшаемое совпадают, то есть вычитание было выполнено верно.

Есть другой способ проверки. Если из уменьшаемого вычесть значение разности, получится вычитаемое. Проверим вычитание вторым способом.

Полученный результат совпадает с вычитаемым, значит, значение разности было найдено верно.

Ответ: 1. верно; 2. верно.

Для обозначения действия умножения используют два знака: «», «». Числа, соединенные знаком умножения, образуют произведение.

Каждое число имеет название: первый множитель, второй множитель.

Например:

При этом - это первый множитель, - второй множитель.

Также известно, что умножение заменяет сумму одинаковых слагаемых.

Первый множитель показывает, какое слагаемое повторяется. Второй множитель показывает, сколько раз повторяется это слагаемое.

Если выполнить действие умножения, получим значение произведения.

Найти значение выражений:

Решение

Рассмотрим первое произведение. Первый множитель равен единице, значит, произведение равно другому множителю.

Рассмотрим второе произведение. Второй множитель равен нулю, значит, значение произведения равно нулю.

Ответ: 1. 365; 2. 0.

Переместительное свойство умножения.

От перестановки множителей произведение не изменяется.

Сочетательное свойство умножения.

Два соседних множителя можно заменять их произведением.

Используя эти два свойства, множители можно переставлять и группировать любыми способами.

Распределительное свойство умножения.

При умножении суммы на число можно умножить на него каждое слагаемое в отдельности и полученные результаты сложить.

Вычислите удобным способом:

Решение

Рассмотрим внимательно множители. Определим, есть ли такие, при умножении которых получается круглое число.

Воспользуемся перестановкой множителей, а затем сгруппируем их.

Ответ: 2100.

Для обозначения действия деления используют следующие знаки:

Числа, соединенные знаком деления, образуют частное. Первое число в записи - то, которое делят, - называют делимым. Второе число в записи - то, на которое делят, - называют делителем.

Если выполнить действие деления, получим значение частного.

Умножение и деление - это взаимообратные действия.

Выполните проверку исчислений:

2.

Решение

Известно, что, если значение произведения разделить на один из множителей, получится второй множитель.

Для проверки правильности умножения разделим произведение на первый множитель.

Полученный результат совпадает со вторым множителем, значит, умножение было выполнено верно.

Также можно значение произведения разделить на второй множитель.

Полученное значение частного совпадает со значением первого множителя. Значит, умножение выполнено верно.

Проверим правильность деления умножением. Если значение частного умножить на делитель, получится делимое.

Умножим значение частного на делитель.

Сравним полученный результат с делителем. Числа совпадают, значит, деление выполнено верно.

Результат деления можно проверить и другим способом.

Если делимое разделить на значение частного, получится делитель.

Результат совпадает с делителем. Значит, деление выполнено верно.

Ответ: 1. верно; 2. верно.

Если ноль разделить на любое другое число, получится ноль.

На ноль делить нельзя.

Если число разделить на 1, то получится число, которое делили.

Если делимое и делитель равны, то частное равно одному.

На этом уроке мы вспоминали следующие арифметические действия: сложение, вычитание, умножение, деление. Также мы повторили различные свойства данных действий и особые случаи, связанные с ними.

Список литературы

  1. Волкова. С.И. Математика. Проверочные работы 4 класс к учебнику Моро М.И, Волкова С.И. 2011. - М.: Просвещение, 2011.
  2. Моро М.И. Математика. 4 класс. В 2-х ч. Часть 1. - М.: Просвещение, 2011.
  3. Моро М.И. Математика. 4 класс. В 2-х ч. Часть 2. - М.: Просвещение, 2011.
  4. Рудницкая В.Н. Тесты по математике. 4класс. К учебнику Моро М.И. 2011. - М.: Экзамен, 2011.
  1. Mat-zadachi.ru ().
  2. Videouroki.net ().
  3. Festival.1september.ru ().

Домашнее задание

  1. Учебник: Волкова. С.И. Математика. Проверочные работы 4 класс к учебнику Моро М.И, Волкова С.И. 2011. - М.: Просвещение, 2011.
  2. Проверочная работа № 1 Вариант 1 стр. 6.
  3. Учебник: Рудницкая В.Н. Тесты по математике. 4 класс. К учебнику Моро М.И. 2011. - М.: Экзамен, 2011.
  4. Упр. 11 стр. 9.

Следует отметить, что комбинаторика является самостоятельным разделом высшей математики (а не частью тервера) и по данной дисциплине написаны увесистые учебники, содержание которых, порой, ничуть не легче абстрактной алгебры. Однако нам будет достаточно небольшой доли теоретических знаний, и в данной статье я постараюсь в доступной форме разобрать основы темы с типовыми комбинаторными задачами. А многие из вас мне помогут;-)

Чем будем заниматься? В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению – их три (дискретность) и существенно то, что среди них нет одинаковых.

С множеством разобрались, теперь о комбинациях. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение). Давайте прямо сейчас посмотрим, как это происходит:

Перестановки, сочетания и размещения без повторений

Не пугайтесь малопонятных терминов, тем более, некоторые из них действительно не очень удачны. Начнём с хвоста заголовка – что значит «без повторений »? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различных объектов. Например, … нет, кашу с паяльником и лягушкой предлагать не буду, лучше что-нибудь повкуснее =) Представьте, что перед вами на столе материализовалось яблоко, груша и банан (при наличии таковых ситуацию можно смоделировать и реально). Выкладываем фрукты слева направо в следующем порядке:

яблоко / груша / банан

Вопрос первый : сколькими способами их можно переставить?

Одна комбинация уже записана выше и с остальными проблем не возникает:

яблоко / банан / груша
груша / яблоко / банан
груша / банан / яблоко
банан / яблоко / груша
банан / груша / яблоко

Итого : 6 комбинаций или 6 перестановок .

Хорошо, здесь не составило особого труда перечислить все возможные случаи, но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт!

Пожалуйста, откройте справочный материал (методичку удобно распечатать) и в пункте № 2 найдите формулу количества перестановок.

Никаких мучений – 3 объекта можно переставить способами.

Вопрос второй : сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт?

Зачем выбирать? Так нагуляли же аппетит в предыдущем пункте – для того, чтобы съесть! =)

а) Один фрукт можно выбрать, очевидно, тремя способами – взять либо яблоко, либо грушу, либо банан. Формальный подсчёт проводится по формуле количества сочетаний :

Запись в данном случае следует понимать так: «сколькими способами можно выбрать 1 фрукт из трёх?»

б) Перечислим все возможные сочетания двух фруктов:

яблоко и груша;
яблоко и банан;
груша и банан.

Количество комбинаций легко проверить по той же формуле:

Запись понимается аналогично: «сколькими способами можно выбрать 2 фрукта из трёх?».

в) И, наконец, три фрукта можно выбрать единственным способом:

Кстати, формула количества сочетаний сохраняет смысл и для пустой выборки:
способом можно выбрать ни одного фрукта – собственно, ничего не взять и всё.

г) Сколькими способами можно взять хотя бы один фрукт? Условие «хотя бы один» подразумевает, что нас устраивает 1 фрукт (любой) или 2 любых фрукта или все 3 фрукта:
способами можно выбрать хотя бы один фрукт.

Читатели, внимательно изучившие вводный урок по теории вероятностей , уже кое о чём догадались. Но о смысле знака «плюс» позже.

Для ответа на следующий вопрос мне требуется два добровольца… …Ну что же, раз никто не хочет, тогда буду вызывать к доске =)

Вопрос третий : сколькими способами можно раздать по одному фрукту Даше и Наташе?

Для того чтобы раздать два фрукта, сначала нужно их выбрать. Согласно пункту «бэ» предыдущего вопроса, сделать это можно способами, перепишу их заново:

яблоко и груша;
яблоко и банан;
груша и банан.

Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов:
яблоком можно угостить Дашу, а грушей – Наташу;
либо наоборот – груша достанется Даше, а яблоко – Наташе.

И такая перестановка возможна для каждой пары фруктов.

Рассмотрим ту же студенческую группу, которая пошла на танцы. Сколькими способами можно составить пару из юноши и девушки?

Способами можно выбрать 1 юношу;
способами можно выбрать 1 девушку.

Таким образом, одного юношу и одну девушку можно выбрать: способами.

Когда из каждого множества выбирается по 1 объекту, то справедлив следующий принцип подсчёта комбинаций: «каждый объект из одного множества может составить пару с каждым объектом другого множества».

То есть, Олег может пригласить на танец любую из 13 девушек, Евгений – тоже любую из тринадцати, и аналогичный выбор есть у остальных молодых людей. Итого: возможных пар.

Следует отметить, что в данном примере не имеет значения «история» образования пары; однако если принять во внимание инициативу, то количество комбинаций нужно удвоить, поскольку каждая из 13 девушек тоже может пригласить на танец любого юношу. Всё зависит от условия той или иной задачи!

Похожий принцип справедлив и для более сложных комбинаций, например: сколькими способами можно выбрать двух юношей и двух девушек для участия в сценке КВН?

Союз И недвусмысленно намекает, что комбинации необходимо перемножить:

Возможных групп артистов.

Иными словами, каждая пара юношей (45 уникальных пар) может выступать с любой парой девушек (78 уникальных пар). А если рассмотреть распределение ролей между участниками, то комбинаций будет ещё больше. …Очень хочется, но всё-таки воздержусь от продолжения, чтобы не привить вам отвращение к студенческой жизни =).

Правило умножения комбинаций распространяется и на бОльшее количество множителей:

Задача 8

Сколько существует трёхзначных чисел, которые делятся на 5?

Решение : для наглядности обозначим данное число тремя звёздочками: ***

В разряд сотен можно записать любую из цифр (1, 2, 3, 4, 5, 6, 7, 8 или 9). Ноль не годится, так как в этом случае число перестаёт быть трёхзначным.

А вот в разряд десятков («посерединке») можно выбрать любую из 10 цифр: .

По условию, число должно делиться на 5. Число делится на 5, если оно заканчивается на 5 либо на 0. Таким образом, в младшем разряде нас устраивают 2 цифры.

Итого, существует : трёхзначных чисел, которые делятся на 5.

При этом произведение расшифровывается так: «9 способами можно выбрать цифру в разряд сотен и 10 способами выбрать цифру в разряд десятков и 2 способами в разряд единиц »

Или ещё проще: «каждая из 9 цифр в разряде сотен комбинируется с каждой из 10 цифр разряда десятков и с каждой из двух цифр в разряде единиц ».

Ответ : 180

А теперь…

Да, чуть не забыл об обещанном комментарии к задаче № 5, в которой Боре, Диме и Володе можно сдать по одной карте способами. Умножение здесь имеет тот же смысл: способами можно извлечь 3 карты из колоды И в каждой выборке переставить их способами.

А теперь задача для самостоятельного решения… сейчас придумаю что-нибудь поинтереснее, …пусть будет про ту же русскую версию блэкджека:

Задача 9

Сколько существует выигрышных комбинаций из 2 карт при игре в «очко»?

Для тех, кто не знает: выигрывает комбинация 10 + ТУЗ (11 очков) = 21 очко и, давайте будем считать выигрышной комбинацию из двух тузов.

(порядок карт в любой паре не имеет значения)

Краткое решение и ответ в конце урока.

Кстати, не надо считать пример примитивным. Блэкджек – это чуть ли не единственная игра, для которой существует математически обоснованный алгоритм, позволяющий выигрывать у казино. Желающие могут легко найти массу информации об оптимальной стратегии и тактике. Правда, такие мастера довольно быстро попадают в чёрный список всех заведений =)

Пришло время закрепить пройденный материал парой солидных задач:

Задача 10

У Васи дома живут 4 кота.

а) сколькими способами можно рассадить котов по углам комнаты?
б) сколькими способами можно отпустить гулять котов?
в) сколькими способами Вася может взять на руки двух котов (одного на левую, другого – на правую)?

Решаем : во-первых, вновь следует обратить внимание на то, что в задаче речь идёт о разных объектах (даже если коты – однояйцовые близнецы). Это очень важное условие!

а) Молчание котов. Данной экзекуции подвергаются сразу все коты
+ важно их расположение, поэтому здесь имеют место перестановки:
способами можно рассадить котов по углам комнаты.

Повторюсь, что при перестановках имеет значение лишь количество различных объектов и их взаимное расположение. В зависимости от настроения Вася может рассаживать животных полукругом на диване, в ряд на подоконнике и т.д. – перестановок во всех случаях будет 24. Желающие могут для удобства представить, что коты разноцветные (например, белый, чёрный, рыжий и полосатый) и перечислить все возможные комбинации.

б) Сколькими способами можно отпустить гулять котов?

Предполагается, что коты ходят гулять только через дверь, при этом вопрос подразумевает безразличие по поводу количества животных – на прогулку могут выйти 1, 2, 3 или все 4 кота.

Считаем все возможные комбинации:

Способами можно отпустить гулять одного кота (любого из четырёх);
способами можно отпустить гулять двух котов (варианты перечислите самостоятельно);
способами можно отпустить гулять трёх котов (какой-то один из четырёх сидит дома);
способом можно выпустить всех котов.

Наверное, вы догадались, что полученные значения следует просуммировать:
способами можно отпустить гулять котов.

Энтузиастам предлагаю усложнённую версию задачи – когда любой кот в любой выборке случайным образом может выйти на улицу, как через дверь, так и через окно 10 этажа. Комбинаций заметно прибавится!

в) Сколькими способами Вася может взять на руки двух котов?

Ситуация предполагает не только выбор 2 животных, но и их размещение по рукам:
способами можно взять на руки 2 котов.

Второй вариант решения: способами можно выбрать двух котов и способами посадить каждую пару на руки:

Ответ : а) 24, б) 15, в) 12

Ну и для очистки совести что-нибудь поконкретнее на умножение комбинаций…. Пусть у Васи дополнительно живёт 5 кошек =) Сколькими способами можно отпустить гулять 2 котов и 1 кошку?

То есть, с каждой парой котов можно выпустить каждую кошку.

Ещё один баян для самостоятельного решения:

Задача 11

В лифт 12-этажного дома сели 3 пассажира. Каждый независимо от других с одинаковой вероятностью может выйти на любом (начиная со 2-го) этаже. Сколькими способами:

1) пассажиры могут выйти на одном и том же этаже (порядок выхода не имеет значения) ;
2) два человека могут выйти на одном этаже, а третий – на другом;
3) люди могут выйти на разных этажах;
4) пассажиры могут выйти из лифта?

И тут часто переспрашивают, уточняю: если 2 или 3 человека выходят на одном этаже, то очерёдность выхода не имеет значения. ДУМАЙТЕ, используйте формулы и правила сложения/умножения комбинаций. В случае затруднений пассажирам полезно дать имена и порассуждать, в каких комбинациях они могут выйти из лифта. Не нужно огорчаться, если что-то не получится, так, например, пункт № 2 достаточно коварен, впрочем, один из читателей отыскал простое решение, и я в очередной раз выражаю благодарность за ваши письма!

Полное решение с подробными комментариями в конце урока.

Заключительный параграф посвящён комбинациям, которые тоже встречаются достаточно часто – по моей субъективной оценке, примерно в 20-30% комбинаторных задач:

Перестановки, сочетания и размещения с повторениями

Перечисленные виды комбинаций законспектированы в пункте № 5 справочного материала Основные формулы комбинаторики , однако некоторые из них по первому прочтению могут быть не очень понятными. В этом случае сначала целесообразно ознакомиться с практическими примерами, и только потом осмысливать общую формулировку. Поехали:

Перестановки с повторениями

В перестановках с повторениями, как и в «обычных» перестановках, участвует сразу всё множество объектов , но есть одно но: в данном множестве один или бОльшее количество элементов (объектов) повторяются. Встречайте очередной стандарт:

Задача 12

Сколько различных буквосочетаний можно получить перестановкой карточек со следующими буквами: К, О, Л, О, К, О, Л, Ь, Ч, И, К?

Решение : в том случае, если бы все буквы были различны, то следовало бы применить тривиальную формулу , однако совершенно понятно, что для предложенного набора карточек некоторые манипуляции будут срабатывать «вхолостую», так, например, если поменять местами любые две карточки с буквами «К» в любом слове, то получится то же самое слово. Причём, физически карточки могут сильно отличаться: одна быть круглой с напечатанной буквой «К», другая – квадратной с нарисованной буквой «К». Но по смыслу задачи даже такие карточки считаются одинаковыми , поскольку в условии спрашивается о буквосочетаниях.

Всё предельно просто – всего: 11 карточек, среди которых буква:

К – повторяется 3 раза;
О – повторяется 3 раза;
Л – повторяется 2 раза;
Ь – повторяется 1 раз;
Ч – повторяется 1 раз;
И – повторяется 1 раз.

Проверка: 3 + 3 + 2 + 1 + 1 + 1 = 11, что и требовалось проверить.

По формуле количества перестановок с повторениями :
различных буквосочетаний можно получить. Больше полумиллиона!

Для быстрого расчёта большого факториального значения удобно использовать стандартную функцию Экселя: забиваем в любую ячейку =ФАКТР(11) и жмём Enter .

На практике вполне допустимо не записывать общую формулу и, кроме того, опускать единичные факториалы:

Но предварительные комментарии о повторяющихся буквах обязательны!

Ответ : 554400

Другой типовой пример перестановок с повторениями встречается в задаче о расстановке шахматных фигур, которую можно найти на складе готовых решений в соответствующей pdf-ке. А для самостоятельного решения я придумал менее шаблонное задание:

Задача 13

Алексей занимается спортом, причём 4 дня в неделю – лёгкой атлетикой, 2 дня – силовыми упражнениями и 1 день отдыхает. Сколькими способами он может составить себе расписание занятий на неделю?

Формула здесь не годится, поскольку учитывает совпадающие перестановки (например, когда меняются местами силовые упражнения в среду с силовыми упражнениями в четверг). И опять – по факту те же 2 силовые тренировки могут сильно отличаться друг от друга, но по контексту задачи (с точки зрения расписания) они считаются одинаковыми элементами.

Двухстрочное решение и ответ в конце урока.

Сочетания с повторениями

Характерная особенность этого вида комбинаций состоит в том, что выборка проводится из нескольких групп, каждая из которых состоит из одинаковых объектов.

Сегодня все хорошо потрудились, поэтому настало время подкрепиться:

Задача 14

В студенческой столовой продают сосиски в тесте, ватрушки и пончики. Сколькими способами можно приобрести пять пирожков?

Решение : сразу обратите внимание на типичный критерий сочетаний с повторениями – по условию на выбор предложено не множество объектов как таковое, а различные виды объектов; при этом предполагается, что в продаже есть не менее пяти хот-догов, 5 ватрушек и 5 пончиков. Пирожки в каждой группе, разумеется, отличаются – ибо абсолютно идентичные пончики можно смоделировать разве что на компьютере =) Однако физические характеристики пирожков по смыслу задачи не существенны, и хот-доги / ватрушки / пончики в своих группах считаются одинаковыми.

Что может быть в выборке? Прежде всего, следует отметить, что в выборке обязательно будут одинаковые пирожки (т.к. выбираем 5 штук, а на выбор предложено 3 вида). Варианты тут на любой вкус: 5 хот-догов, 5 ватрушек, 5 пончиков, 3 хот-дога + 2 ватрушки, 1 хот-дог + 2 + ватрушки + 2 пончика и т.д.

Как и при «обычных» сочетаниях, порядок выбора и размещение пирожков в выборке не имеет значения – просто выбрали 5 штук и всё.

Используем формулу количества сочетаний с повторениями:
способом можно приобрести 5 пирожков.

Приятного аппетита!

Ответ : 21

Какой вывод можно сделать из многих комбинаторных задач?

Порой, самое трудное – это разобраться в условии.

Аналогичный пример для самостоятельного решения:

Задача 15

В кошельке находится достаточно большое количество 1-, 2-, 5- и 10-рублёвых монет. Сколькими способами можно извлечь три монеты из кошелька?

В целях самоконтроля ответьте на пару простых вопросов:

1) Могут ли в выборке все монеты быть разными?
2) Назовите самую «дешевую» и самую «дорогую» комбинацию монет.

Решение и ответы в конце урока.

Из моего личного опыта, могу сказать, что сочетания с повторениями – наиболее редкий гость на практике, чего не скажешь о следующем виде комбинаций:

Размещения с повторениями

Из множества, состоящего из элементов, выбирается элементов, при этом важен порядок элементов в каждой выборке. И всё бы было ничего, но довольно неожиданный прикол заключается в том, что любой объект исходного множества мы можем выбирать сколько угодно раз. Образно говоря, от «множества не убудет».

Когда так бывает? Типовым примером является кодовый замок с несколькими дисками, но по причине развития технологий актуальнее рассмотреть его цифрового потомка:

Задача 16

Сколько существует четырёхзначных пин-кодов?

Решение : на самом деле для разруливания задачи достаточно знаний правил комбинаторики: способами можно выбрать первую цифру пин-кода и способами – вторую цифру пин-кода и столькими же способами – третью и столькими же – четвёртую. Таким образом, по правилу умножения комбинаций, четырёхзначный пин-код можно составить: способами.

А теперь с помощью формулы. По условию нам предложен набор из цифр, из которого выбираются цифры и располагаются в определенном порядке , при этом цифры в выборке могут повторяться (т.е. любой цифрой исходного набора можно пользоваться произвольное количество раз) . По формуле количества размещений с повторениями:

Ответ : 10000

Что тут приходит на ум… …если банкомат «съедает» карточку после третьей неудачной попытки ввода пин-кода, то шансы подобрать его наугад весьма призрачны.

И кто сказал, что в комбинаторике нет никакого практического смысла? Познавательная задача для всех читателей сайт:

Задача 17

Согласно государственному стандарту, автомобильный номерной знак состоит из 3 цифр и 3 букв. При этом недопустим номер с тремя нулями, а буквы выбираются из набора А, В, Е, К, М, Н, О, Р, С, Т, У, Х (используются только те буквы кириллицы, написание которых совпадает с латинскими буквами) .

Сколько различных номерных знаков можно составить для региона?

Не так их, кстати, и много. В крупных регионах такого количества не хватает, и поэтому для них существуют по несколько кодов к надписи RUS.

Решение и ответ в конце урока. Не забываем использовать правила комбинаторики;-) …Хотел похвастаться эксклюзивом, да оказалось не эксклюзивом =) Заглянул в Википедию – там есть расчёты, правда, без комментариев. Хотя в учебных целях, наверное, мало кто прорешивал.

Наше увлекательное занятие подошло к концу, и напоследок я хочу сказать, что вы не зря потратили время – по той причине, что формулы комбинаторики находят ещё одно насущное практическое применение: они встречаются в различных задачах по теории вероятностей ,
и в задачах на классическое определение вероятности – особенно часто =)

Всем спасибо за активное участие и до скорых встреч!

Решения и ответы :

Задача 2: Решение : найдём количество всех возможных перестановок 4 карточек:

Когда карточка с нулём располагается на 1-м месте, то число становится трёхзначным, поэтому данные комбинации следует исключить. Пусть ноль находится на 1-м месте, тогда оставшиеся 3 цифры в младших разрядах можно переставить способами.

Примечание : т.к. карточек немного, то здесь несложно перечислить все такие варианты:
0579
0597
0759
0795
0957
0975

Таким образом, из предложенного набора можно составить:
24 – 6 = 18 четырёхзначных чисел
Ответ : 18

З.Ы. Никогда не думал, что эти задачи будут предлагать первоклассникам, один из которых заметил, что карточку «9» можно использовать как «6», и поэтому количество комбинаций нужно удвоить. Но в условии всё же заявлена конкретная цифра и от удвоения лучше воздержаться.

Задача 4: Решение : способами можно выбрать 3 карты из 36.
Ответ : 7140

Задача 6: Решение : способами.
Другой вариант решения : способами можно выбрать двух человек из группы и способами распределить должности в каждой выборке. Таким образом, старосту и его заместителя можно выбрать способами. Третий вариант решения , нашёл другой читатель сайта. Через комбинаторное произведение:

(11 способами можно выйти один пассажир и для каждого из этих вариантов – 10 способами может выйти другой пассажир и для каждой возможной комбинации их выхода – 9 способами может выйти третий пассажир)

4) Способ первый : суммируем комбинации первых трёх пунктов:
способом пассажиры могут выйти из лифта.

Способ второй : в общем случае он более рационален, более того, позволяет обойтись без результатов предыдущих пунктов. Рассуждения таковы: способами может выйти 1-й пассажир из лифта и способами может выйти 2-й пассажир и
2) Самый «дешёвый» набор содержит 3 рублёвые монеты, а самый «дорогой» – 3 десятирублёвые.

Задача 17: Решение : способами можно составить цифровую комбинацию автомобильного номера, при этом одну из них (000) следует исключить: .
способами можно составить буквенную комбинацию автомобильного номера.
По правилу умножения комбинаций, всего можно составить:
автомобильных номера
(каждая цифровая комбинация сочетается с каждой буквенной комбинацией).
Ответ : 1726272

Разделы: Математика

Класс: 5

Тема: Деление с остатком.

Цели урока:

Повторить деление с остатком, вывести правило, как найти делимое при делении с остатком, и записать его в виде буквенного выражения;
- развивать внимание, логическое мышление, математическую речь;
- воспитание культуры речи, усидчивости.

Ход урока

Занятие сопровождается компьютерной презентацией. (Приложение)

I . Организационный момент

II . Устный счет. Сообщение темы урока

Решив примеры и заполнив таблицу, вы сумеете прочитать тему урока.

На доске:

Прочитайте тему урока.

Открыли тетради, записали число, тему урока. (Слайд 1)

III . Работа по теме урока

Решим устно. (Слайд 2)

1. Прочитайте выражения:

30: 5
103: 10
34: 5
60: 7
47: 6
131: 11
42: 6

На какие две группы их можно разделить? Выпишите и решите те, в которых деление с остатком.

2. Проверим. (Слайд 3)

Без остатка:

С остатком:

30: 5
42: 6

103: 10 = 10 (ост 3)
34: 5 = 6 (ост 4)
60: 7 = 8 (ост 4)
47: 6 = 7 (ост 5)
131: 11 = 11 (ост 10)

Расскажите, как выполняли деление с остатком?

Не всегда одно натуральное число делится на другое число. Но всегда можно выполнить деление с остатком.

Что, значит, разделить с остатком? Чтобы ответить на этот вопрос, решим задачу. (Слайд 4)

В гости к бабушке пришли 4 внука. Бабушка решила угостить внуков конфетами. В вазочке было 23 конфеты. Сколько конфет достанется каждому внуку, если бабушка предложит поделить конфеты поровну?

Давайте рассуждать.

Сколько конфет у бабушки? (23)

Сколько внуков пришло в гости к бабушке? (4)

Что необходимо сделать по условию задачи? (Конфеты нужно разделить поровну, надо разделить 23 на 4; 23 делится на 4 с остатком; в частном получится 5, а в остатке 3.)

Сколько же конфет достанется каждому внуку? (Каждому внуку достанется по 5 конфет, и в вазочке останется 3 конфеты.)

Запишем решение. (Слайд 5)

23: 4=5 (ост 3)

Как называется число, которое делят? (Делимым.)

Что такое делитель? (Число, на которое делят.)

Как называют результат деления с остатком? (Неполное частное.)

Назовите делимое, делитель, неполное частное и остаток в нашем решении (23 - делимое, 4 - делитель, 5 - неполное частное, 3 – остаток.)

Ребята, подумайте и запишите, как найти делимое 23, зная делитель, неполное частное и остаток?

Проверим.

Ребята, давайте сформулируем правило, как найти делимое, если известны делитель, неполное частное и остаток.

Правило. (Слайд 6)

Делимое равно произведению делителя и неполного частного, сложенному с остатком.

а = вс + d , а - делимое, в - делитель, с - неполное частное, d - остаток.

Когда выполняется деление с остатком, что мы должны помнить?

Правильно, остаток всегда меньше делителя.

А если остаток равен нулю, делимое делится на делитель без остатка, нацело.

IV . Закрепление изученного материала

Слайд 7

Найдите делимое, если:

А) неполное частное равно 7, остаток равен 3, а делитель 6.
Б) неполное частное равно 11, остаток равен 1, а делитель 9.
В) неполное частное равно 20, остаток равен 13, а делитель 15.

V . Работа с учебником

1. Работа над задачей.
2. Оформление решения задачи.

№ 516 (Задачу решает у доски ученик.)

20 х 10: 18 = 11 (ост 2)

Ответ: 11 деталей по 18 кг можно отлить из 10 болванок, 2 кг чугуна останется.

№ 519 (Рабочая тетрадь, с. 52 №1.)

Слайд 8, 9

Первое задание выполняет ученик у доски. Второе и третье - ученики выполняют самостоятельно с самопроверкой.

Устно решаем задачи. (Слайд 10)

VI . Итог урока

В вашем классе 17 учеников. Вас построили в шеренги. Получилось несколько шеренг из 5 учеников и одна неполная шеренга. Сколько получилось полных шеренг и сколько человек в неполной шеренге?

Ваш класс на уроке физкультуры снова построили в шеренги. На этот раз получилось 4 одинаковых полных шеренг и одна неполная? Сколько человек в каждой шеренге? А в неполной?

Отвечаем на вопросы:

Может ли остаток быть больше делителя? Может ли остаток быть равен делителю?

Как найти делимое по неполному частному, делителю и остатку?

Какие могут быть остатки при делении на 5? Приведите примеры.

Как проверить, верно ли выполнено деление с остатком?

Оксана задумала число. Если это число увеличить в 7 раз и к произведению прибавить 17, то получится 108. Какое число задумала Оксана?

VII . Домашнее задание

Пункт 13, № 537, 538, рабочая тетрадь, с. 42, №4.

Список литературы

1. Математика: Учеб. для 5 кл. общеобразоват. учреждений / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – 9-е изд., стереотип. – М. : Мнемозина, 2001. – 384 с.: ил.
2. Математика. 5 класс. Рабочая тетрадь №1. натуральные числа / В.Н. Рудницкая. – 7-е изд. – М. : Мнемозина, 2008. – 87 с.: ил.
3. Чесноков А.С., Нешков К.И. Дидактические материалы по математике для 5 класса. – М. : Классикс Стиль, 2007. – 144 с.: ил.

После небольшого перерыва вернусь к методикам обучения математике, на этот раз для учеников постарше.

Для того, чтобы подготовиться к изучению дробей, нужно начать с признаков делимости и разложения чисел на простые множители. После этого можно переходить к НОД, НОК и самим дробям. Опять же эти навыки крайне полезны для понимания состава и способов оперирования с числами.

Как обычно, по методике можно пройти курс в электронном виде Признаки делимости, разложение на простые множители .

Таблица делимости включает основные, часто используемые признаки. Остальные обычно почти не используются.

Последовательность изучения
На входе ребенок должен достаточно уверенно владеть делением.

Шаг 1. Сначала повторим деление с остатком и без


Шаг 2. Повторим, какие числа являются простыми, а какие составными

Шаг 3. Делимость на 10 и 5
Это проще всего, определяем по последней цифре - 0 или 5.

Шаг 4. Делимость на 2
Определяем по последней цифре - она должна быть четной.

Шаг 5. Делимость на 3 и 9
Сначала складываем все цифры числа, потом проверяем делится ли на 3 / 9 получившаяся сумма.

Шаг 6. Делимость на 4 и 6
Здесь удобнее всего использовать составные признаки деления.
Для деления на 4 берем только число из последних 2ух чисел (без сотен, тысяч и т.д.). Делим на 2 и проверяем результат на четность последней цифры.

Для деления на 6 число одновременно должно делиться на 2 (последняя цифра четная) и на 3 (сумма цифр делится на 3).

Шаг 7. Делимость на 7
Существует признак делимости на 7, но он сложный. И часто приходится применять его несколько раз подряд.

В качестве альтернативы здесь можно использовать метод простой проверки делимости - вычитание кратных чисел и проверку делимости остатка. Заодно отработаем этот метод.

Шаг 8. Потренируемся находить делители числа и раскладывать
Мы научились проверять, можно ли нацело поделить число на простое. Теперь, когда мы умеем это делать, можем начать раскладывать число на множители.

Алгоритм простой:
- для этого последовательно начинаем проверять делимость числа на все простые, начиная с меньшего (с 2)
- как только нашли делитель, получаем результат деления
- дальше берем результат и опять пробуем делить на простые (начиная с того, на котором остановились)
- и так далее, пока в результате очередного деления не получим простое число

Шаг 9. Способы, как раскладывать быстрее и удобнее
Теперь, когда мы научились делать по алгоритму, мы можем подумать как это делать удобнее и быстрее.
Для этого можно брать очевидные делители и делить сначала на них.

Как можно применить методику
можно тренировать ребенка самому, задавать ему примеры
можно начать проходить

Поделиться: