Математический анализ. Математический анализ, функциональный анализ Краткая аннотация книги

Книги. Скачать книги DJVU, PDF бесплатно. Бесплатная электронная библиотека
В.А. Зорич, Математический анализ (Часть 2)

Вы можете (программа отметит желтым цветом)
Вы можете посмотреть список книг по высшей математике с сортировкой по алфавиту.
Вы можете посмотреть список книг по высшей физике с сортировкой по алфавиту.

Уважаемые дамы и господа!! Для того, чтобы без "глюков" скачать файлы электронных публикаций, нажмите на подчеркнутую ссылку с файлом ПРАВОЙ кнопкой мыши , выберите команду "Save target as ..." ("Сохранить объект как..." ) и сохраните файл электронной публикации на локальный компьютер. Электронные публикации обычно представлены в форматах Adobe PDF и DJVU.

Глава IX. Непрерывные отображения (общая теория)

§ 1. Метрическое пространство
1. Определения и примеры (11).
2. Открытые и замкнутые подмножества метрического пространства (13).
3. Подпространство метрического пространства (17).
4. Прямое произведение метрических пространств (18).

§ 2. Топологическое пространство
1. Основные определения (19).
2. Подпространство топологического пространства (23).
3. Прямое произведение топологических пространств. (24).

§ 3. Компакты
1. Определение и общие свойства компакта (25).
2. Метрические компакты (27).

§ 4. Сиязные топологические пространства

§ 5. Полные метрические пространства К Основные определения и примеры (31).
2. Пополнение метрического пространства (34).

§ 6. Непрерывные отображения топологических пространств
1. Предел отображения (38).
2. Непрерывные отображения (40).

§ 7. Принцип сжимающих отображений

Глава Х. Дифференциальное исчисление с более общей точки зрения

§ 1. Линейное нормированное пространство
1. Некоторые примеры линейных пространств анализа (50).
2. Норма в векторном пространстве (51).
3. Скалярное произведение в векторном пространстве (54).

§ 2. Линейные и полилинейные операторы 67
1. Определения и примеры (57).
2. Норма оператора (64)).
3. Пространство непрерывных операторов (64).

§ 3. Дифференциал отображения
1. Отображение, дифференцируемое в точке (69).
2. Общие законы дифференцирования (70).
3. Некоторые примеры (71).
4. Частные производные отображения (77).

§ 4. Теорема о конечном приращении и некоторые примеры ее использования
1. Теорема о конечном приращении (80)
2. Некоторые примеры применения теоремы о конечном приращении (83).

§ 5. Производные отображения высших порядков
1. Определение n-го дифференциала (87).
2. Производная по вектору и вычисление значений n-го дифференциала (88).
3. Симметричность дифференциалов высшего порядка (89).
4. Некоторые замечания (91).

§ 6. Формула Тейлора и исследование экстремумов
1. Формула Тейлора для отображений (93).
2. Исследование внутренних экстремумов (94).
3. Некоторые примеры (96).

§ 7. Общая теорема о неявной функции

Глава XI. Кратные интегралы 115

§ 1. Интеграл Римана на n-мерном промежутке
1. Определение интеграла (113).
2. Критерий Лебега интегрируемости функции по Рнману (115).
3. Критерий Дарбу (120).

§ 2. Интеграл по множеству
1. Допустимые множества (123).
2. Интеграл по множеству (124)
3. Мера (объем) допустимого множества (125).

§ 3. Общие свойства интеграла
1. Интеграл как линейный функционал (127).
2. Аддитивность интеграла (127).
3. Оценки интеграла (128).

§ 4. Сведение кратного интеграла к повторному
1. Теорема Фубини (131).
2. Некоторые следствия (134).

§ 5. Замена переменных в кратном интеграле 139
1. Постановка вопроса и эвристический вывод формулы - замены переменных (139).
2. Измеримые множества и гладкие отображения (141).
3. Одномерный случай (143).
4. Случай простейшего диффеоморфизма в Rn (145).
5. Композиция отображений и формула замены переменных (146).
6. Аддитивность интеграла и завершение доказательства формулы замены переменных в интеграле (147).
7. Некоторые следствия и обобщения формулы замены переменных в кратных интегралах (148).

§ 6. Несобственные кратные интегралы
1. Основные определения (154).
2. Мажорантный призивк сходимости несобственного интеграла (157).
3. Замена переменных в несобственном интеграле (159).

Глава XII. Поверхности и дифференциальные формы в Rn

§ 1. Поверхности в Rn

§ 2. Ориентация поверхности

§ 3. Край поверхности и его ориентация
1. Поверхность с краем (182).
2. Согласование ориентации поверхности и края (184).

§ 4. Площадь поверхности в евклидовом пространстве

§ 5. Начальные сведения о дифференциальных формах
1. Дифференциальная форма, определение и примеры (197).
2. Координатная запись дифференциальной формы (200).
3. Внешний дифференциал формы (203).
4. Перенос векторов и форм при отображениях (206).
5. Формы на поверхностях (209).

Глава XIII. Криволинейные и поверхностные интегралы

§ 1. Интеграл от дифференциальной формы
1. Исходные задачи, наводящие соображения, примеры (213).
2. Определение интеграла от формы по ориентированной поверхности (219).

§ 2. Форма объема, интегралы первого и второго рода
1. Масса материальной поверхности (227).
2. Плбщадь поверхности как интеграл от формы (228).
3. Форма объема (229).
4. Выражение формы объема в декартовых координатах (231).
5. Интегралы первого и второго рода (232).

§ 3. Основные интегральные формулы анализа
1. Формула Грина (236).
2. Формула Гаусса-Остроградского (241).
3. Формула Стокса в R3 (244).
4. Общая формула Стокса (246).

Глава XIV. Элементы векторного анализа и теории поля

§ 1. Дифференциальные Ъперации векторного анализа 253
1. Скалярные и векторные поля (253)
2. Векторные поля и формы в R3 (253).
3. Дифференциальные операторы grad, rot, div и V (256).
4. Некоторые дифференциальные формулы векторного анализа (259).
5. Векторные операции в криволинейных координатах (261).

§ 2. Интегральные формулы теории поля 270
1. Классические интегральные формулы в векторных обозначениях (270).
2. Физическая интерпретация (273).
3. Некоторые дальнейшие интегральные формулы (277)

§ 3. Потенциальные поля
1. Потенциал векторного поля (281).
2. Необходимое условие потенциальности (282).
3. Критерий потенциальности векторного поля (288).
4. Топологическая структура области и потенциал (286).
5. Векторный потенциал. Точные и замкнутые формы (288).

§ 4. Примеры приложений
1. Уравнение теплопроводности (295).
2. Уравнение неразрыв ности (297).
3. Основные уравнения динамики сплошной среды (298).
4. Волновое уравнение (300).

Глава XV. Интегрирование дифференциальных форм на многообразиях 305

§ 1. Некоторые напоминания из линейной алгебры
1. Алгебра фдрм (305).
2. Алгебра кососимметрических форм (306).
3. Линейные отображения линейных пространств, и сопряженные отображения сопряженных пространств (309). Задачи и упражнения 310

§ 2. Многообразие.
1. Определение многообразия (312).
2. Гладкие многообразия и гладкие отображения (317).
3. Ориентация, многообразия и, его края (320).
4. Разбиение единицы и реализация многообразий в виде поверхностей в Rn (323).

§ 3. Дифференциальные формы и их интегрирование на многообразиях
1. Касательное пространство к многообразию в точке (329).
2. Дифференциальная форма на многообразии (333).
3. Внешний дифференциал (335).
4. Интеграл от формы по многообразию (336).
5. Формула Стокса (338).

§ 4. Замкнутые и точные формы на многообразии
1. Теорема Пуанкаре (344).
2. Гомологии и когомологви (348).

Глава XVI. Равномерная сходимость и основные операции анализа над рядами и семействами функций 355

§ 1. Поточечная и равномерная сходимость
1. Поточечная сходимость (355). 2.Постановка основных вопросов (356)
3. Сходимость и равномерная сходимость семейства функций, зависящвх от параметра (358).
4. Критерий Коши равномерной сходи мости (361).

§ 2. Равномерная сходимость рядов функций
1. Основные определения и критерий равномерной сходимости ряда (363).
2. Признак Вейергатрасса равномерной сходимости ряда (366).
3. Признак Абеля-Дирихле (368).

§ 3. Функциональные свойства предельной функции
1. Конкретизация задачи (373).
2. Условия коммутнрованвя двух предельных переходов (374).
3. Непрерывность и предельный переход (376).
4. Интегрирование и предельный переход (380).
5. Дифференцирование и предельный переход (381).

§ 4. Компактные и плотные подмножества пространства непрерывных функций
1. Теорема Арцела-Асколи (391).
2. Метрическое пространство (393)
3. Теорема Стоуна (394).

Глава XVII. Интегралы, зависящие от параметра

§ 1. Собственные интегралы, зависящие от параметра
1. Понятие интеграла, зависящего от параметра (400).
2. Непрерывность интеграла, зависящего от параметра (401).
3. Дифференцирование интеграла, зависящего от параметра (402).
4. Интегрирование интеграла, зависящего от параметра (405)

§ 2. Несобственные интегралы, зависящие от параметра
1. Равномерная сходимость несобственного интеграла относительно параметра (407).
2. Предельный переход под знаком несобственного интеграла и непрерывность несобственного интеграла, зависящего от параметра (415).
3. Дифференцирование несобственного интеграла по параметру (417).
4. Интегрирование несобственного интеграла по параметру (420).

§ 3. Эйлеровы интегралы
1. Бета-функция (428).
2. Гамма-функция (429).
3. Связь между функциями В и Г (432).
4. Некоторые примеры (433).

§ 4. Свертка функций и начальные сведения об обобщенных функциях
1. Свертка в физических задачах (наводящие соображения) (439).
2. Некоторые общие свойства свертки (442).
3. Дельтаобразные семейства функций и аппроксимациониая теорема Вейерштрасса.(445).
4. Начальные представления о распределениях (450).

§ 5. Кратные интегралы, зависящие от параметра
1. Собственные кратные интегралы, зависящие от параметра (463).
2. Несобственные кратные интегралы, зависящие от параметра (467).
3. Несобственные интегралы с переменной особенностью (469).
4. Свертка, фундаментальное решение и обобщенные функции в многомерном случае (473).

Глава XVIII Рид Фурье и преобразование Фурье

§ 1. Основные общие представления, связанные с понятием ряда Фурье
1. Ортогональные системы функций (488).
2. Коэффициенты Фурье (494).
3. Ряд Фурье (499).
4. Об одном важном источнике ортогональных систем функций в анализе (506).

§ 2. Тригонометрический ряд Фурье
1. Основные виды сходимости классического ряда Фурье (515)
2. Исследование поточечной схвдимости тригонометрического ряда Фурье (520).
3. Гладкость функции и скорость убывания коэффициентов Фурье (530).
4. Полнота тригонометрической системы (535).

§ 3. Преобразование Фурье
1. Представление функции интегралом Фурье (551).
2. Регулярность функции и скорость убывания ее преобразования Фурье (562)
3. Важнейшие аппаратные свойства преобразования Фурье (566)
4. Примеры приложений (572).

Глава XIX. Асимптотические разложения

§ 1. Асимптотическая формула и асимптотический ряд
1. Основные определения (586).
2. Общие сведения об асимптотических рядах (591).
3. Степенные асимптотические ряды (696).

§ 2. Асимптотика интегралов (метод Лапласа)
1. Идея метода Лапласа (602).
2. Принцип локализации дли интеграла Лапласа (605).
3. Канонические интегралы и их асимптотика (607).
4. Главный член асимптотики интеграла Лапласа (610).
5. Асимптотические разложения интегралов Лапласа (613).

Краткая аннотация книги

В книге отражена ставшая более тесной связь курса классического анализа с современными математическими курсами (алгебры, дифференциальной геометрии, дифференциальных уравнений, комплексного и функционального ана лиза). Во вторую часть,учебника включены следующие разделы: Многомерный интеграл. Дифференциальные формы и их интегрирование. Ряды и интегралы, зависящие от параметра (в том числе ряды и преобразования Фурье, а также асимптотические разложения).

 Текст снабжен вопросами и задачами, дополняющими материал книги и существующих задачников по анализу. Органической частью текста являются примеры приложений развиваемой теории, котбрыми часто служат содержательные задачи механики и физики.

 Для студентов университетов, обучающихся по специальности "Математика" и "Механика". Может быть полезна студентам факультетов и вузов с расширенной программой по математике, а так же специалистам в области математики и ее приложений.


Все книги можно скачать бесплатно и без регистрации.

Теория.

NEW. Натанзон С.М. Краткий курс математического анализа. 2004 год. 98 стр. djvu. 1.2 Мб.
Эта публикация является краткой записью прочитанного автором курса лекций для студентов 1 курса Независимого Московского университета в 1997-1998 и 2002-2003 учебных годах.

Скачать

NEW. Е.Б. Боронина. Математический анализ. Конспект лекций. 2007 год. 160 стр. pdf. 2.1 Мб.
Эта книга написана для студентов технических вузов, желающих подготовиться к экзамену по математическому анализу. Содержание данной книги полностью соответствует программе по курсу «Математический анализ», экзамен по которому предусмотрены в большинстве высших учебных заведений России. Программа помогает быстро и без лишних трудностей найти необходимый ответ на поставленный вопрос.
Вопросы составлены автором на основе личного опыта с учетом требований преподавателей.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Архипов, Садовничий, Чубариков. Лекции по математическому анализу. Учебник.анализ. 1999 год. 635 стр. djvu. 5.2 Мб.
Книга является учебником по курсу математического анализа и посвящена дифференциальному и интегральному исчислениям функций одной и нескольких переменных. В ее основу положены лекции, прочитанные авторами на механико-математическом факультете МГУ им. М. В. Ломоносова. В учебнике предложен новый подход к изложению ряда основных понятий и теорем анализа, а также и к самому содержанию курса. Для студентов университетов, педагогических вузов и вузов с углубленным изучением математики

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Аксёнов А.П. Математический анализ. (Ряды Фурье. Интеграл Фурье. Суммирование расходящихся рядов.) Учебное пособие. 1999 год. 86 стр. PDF 1.2 Мб.
Пособие соответствует государственному стандарту дисциплины "Математический анализ" направления бакалаврской подготовки 510200 "Прикладная математика и информатика".
Содержит изложение теоретического материала в соответствии с действующей программой по темам: "Ряды Фурье", "Интеграл Фурье", "Суммирование расходящихся рядов". Приведено большое количество примеров. Изложено применение методов Чезаро и Абеля-Пуассона в теории рядов. Рассмотрен вопрос о гармоническом анализе функций, заданных эмпирически.
Предназначено для студентов физико-механического факультета специальностей 010200, 010300, 071100, 210300, а также для преподавателей, ведущих практические занятия.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Аксёнов. Математический анализ. (Интегралы, зависящие от параметра. Двойные интегралы. Криволинейные интегралы.) Учебное пособие СПб. 2000 год. 145 стр. PDF . Размер 2.3 Мб. djvu.
Пособие соответствует государственному стандарту дисциплины "Математический анализ" направления бакалаврской подготовки 510200 "Прикладная математика и информатика". Содержит изложение теоретического материала в соответствии с действующей программой по темам: "Интегралы, зависящие от параметра, собственные и несобственные", "Двойной интеграл", "Криволинейные интегралы первого и второго рода", "Вычисление площадей кривых поверхностей, заданных как явными, так и параметрическими уравнениями", "Эйлеровы интегралы (Бета-функция и Гамма-функция)". Разобрано большое количество примеров и задач (общим числом 47).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Де Брёйн. Асимптотические методы в анализе. 245 стр. djvu. 1.6 Мб.
Книга содержит элементарное изложение ряда методов, используемых в анализе для получения асимптотических формул. Важность излагаемых в книге методов, наглядность и доступность изложения делают эту книгу очень ценной для всех начинающих знакомиться с подобными методами. Книга представляет несомненный интерес также для тех, кто уже знаком с этой областью анализа.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Стефан Банах. Дифференциальное и интегральное исчисление. 1966 год. 437 стр. djvu. 7.7 Мб.
Стефан Банах - один из крупнейших математиков XX столетия. Настоящая книга была им задумана как пособие для первоначального ознакомления с предметом. Между тем автору удалось в книге небольшого объема мастерски осветить почти весь основной материал дифференциального и интегрального исчисления, не отпугивая при этом читателя скрупулезной строгостью изложения.
Книга отличается простотой и лаконичностью изложения. Она содержит много удачно подобранных примеров, а также задач для самостоятельного решения. Рассчитана на студентов втузов (особенно заочных), пединститутов, а также на инженерно-технических работников, которые пожелают освежить в памяти основные факты дифференциального и интегрального исчисления.
При подготовке второго издания учтен опыт преподавания по этой книге в некоторых высших технических учебных заведениях; в связи с этим в книгу внесено небольшое число добавлений, а также исправлены некоторые места текста. Это приблизило книгу к уровню современных учебников по математическому анализу и сделало возможным использование ее во втузах.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Б.М. Будак, С.В. Фомин. Кратные интегоалы и ряды. Учебник.1965 год. 606 стр. djvu. 4.6 Мб.
Для физ.-мат. факультетов университетов.
РЕКОМЕНДУЮ!!!. Особенно для ФИЗИКОВ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Виосагмир И.А. Высшая математика для чайников. Предел функции. 2011 год. 95 стр. pdf. 6.1 Мб.
Я приветствую Вас в своей первой книге, посвященной пределам функции. Это первая часть из моей будущей серии “высшая математика для чайников”. Название книги уже должно Вам многое о ней рассказать, но Вы его можете совершенно не так понять. Эта книга посвящена не “чайникам”, а всем тем, кому нелегко понять то, что творят профессоры в своих книгах. Я уверен, что Вы меня понимаете. Я сам находился и нахожусь в такой ситуации, что просто вынужден прочитывать одно и то же предложение несколько раз. Это нормально? Я думаю – нет.
Так чем же моя книга отличается от всех других? Во-первых, здесь нормальный язык, а не “заумный”; во-вторых здесь разобрана масса примеров, которая, кстати, наверняка, пригодится вам; в-третьих, текст имеет существенное различие между собой – главные вещи выделены определенными маркерами, и наконец, моя цель лишь одна – ваше понимание. От Вас требуется только одного: желания и умения. “Умения?” – спросите Вы. Да! Умения запоминать и понимать.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

В.Н. Горбузов. Математический анализ: интегpалы, зависящие от паpаметpов. Уч. пособие. 2006 год. 496 стр. PDF. 1.6 Мб.
Излагается дифференциальное и интегральное исчисление функций, заданных опpеделёнными несобственным интегpалами, которые зависятот паpаметpов. Предназначено для студентов университетов, обучающихся по матическим и физическим специальностям, а также для студентов технических специальностей с расширенной программой по математике.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Дороговцев А.Я. Математический анализ. Краткий курс в современном изложинии. Издание второе. 2004 год. 560 стр. djvu. 5.1 Мб.
Книга содержит краткое и вместе с тем достаточно полное по охвату материала изложение современного курса математического анализа. Книга рассчитана в первую очередь на студентов университетов и техничеких вузов и предназначена для первоначального изучения курса. Приведено модернизированное изложение ряда разделов: функции многих переменных, кратные интегралы, интегралы по многообразиям, oбъяснена формула Стокса и др. Теоретический материал иллюстрируется бсльшим числом упражнений и примеров. . Для студентов вузов, преподавателей математики, инженерно-технических работников.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Егоров В.И., Салимова А.Ф. Определенный и кратные интегралы. Элементы теории поля. 2004 год. 256 стр. djvu. 1.6 Мб.
В издании представлена теория и основные приложения определенного и кратных интегралов, а также элементы теории поля. Материал адаптирован к современной программе математического образования в высших технических учебных заведениях, к использованию в компьютерных обучающих системах. Книга предназначается студентам технических вузов. Она также может оказаться полезной преподавателям, инженерам, научным работникам.
Понятно напмсанная книга. Все.утверждения теории показываются на примерах. Рекомендую, как дополнительную литературу для понимания матерала.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Евграфов. Асимптотические оценки и целые функции. 320 стр. djvu. 3.2 Мб.
Книга посвящена изложению различных методов асимптотических оценок (метод Лапласа, метод перевала, теория вычетов), применяемых в теории целых функций. Методы иллюстрируются в основном на материале этой теории. Основныне факты из теории целых функций не предполагаются известными читателю - их изложение органически входит в структуру книги. В 3-е издание добавлена глава об асимптотике конформных отображений. Книга рассчитана на широкий контингент читателей - от студентов до научных работников, как математиков так и прикладников.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Я.Б. Зельдович, И.М. Яглом. Высшая математика лоя начинаюших физиков и техников. 1982 год. 514 стр. djvu. 12.3 Мб.
Настоящая книга представляет собой введение в математический анализ. Наряду с изложением начал аналитической геометрии и математического анализа (дифференциального и интегрального исчисления) книга содержит понятия о степенных и тригонометрических рядах и о простейших дифференциальных уравнениях, а также затрагивает ряд разделов и тем из физики (механика и теория колебаний, теория электрических цепей, радиоактивный распад, лазеры и др.). Книга рассчитана на читателей, интересующихся естественнонаучными приложениями высшей математики, преподавателей вузов и втузов, а также будущих физиков и инженеров.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Зельдович, Яглом. Книга в трех частях: 1. Элементы высшей математики. Содержит: Функции и графики (50 стр)(, Что такое рроизводная (50 стр), Что такое интеграл (20 стр), Вычисление производных (20 стр), Техника интегрирования (20 стр), Ряды, простейшие дифуравнения (35 стр), Исследование функций, несколько задач по геометрии (55 стр). 2. Приложения высший математики к некотрым вопросам физики и техники (160 стр). Содержит: Радиоактивный распад и деление ядер, Механика, Колебания, Тепловое движение молекул, распределение плотности воздуха в атмосфере, Поглощение и излучение света, лазеры, Электрические цепм и колебательные движения в них. 3. Дополнительные темы из высшей математики (50 стр.). Содержит: Комплексные числа, Какие функции нужны физику, Замечательная дельта-функция Дирака, Некоторы приложения функции комплексной переменной и дельта-функции. 4. Приложения, Ответы, Указания, Решения. Усекли, что за книга? Офигеть можно, прчитав одно оглавление. Но это не учебник по математике, ЭТА КНИГА О ТОМ КАК ИСПОЛЬЗОВАТЬ МАТЕМАТИКУ. Между прочим, изучая ее, вы неизбежно выучите и физику. Super. djvu, 500 стр. Размер 8.7 Мб.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Зорич В.А. Математический анализ. В 2-х частях. Учебник. 1- 1997, 2 - 1984 годы. 567+640 стр. djvu. 9.6+7.4 Мб.
Университетский учебник для студентов физико-математических специальностей. Может быть полезен студентам факультетов и вузов с расширенной математической подготовкой, а также специалистам в области математики и ее приложений.В книге отражена связь курса классического анализа с современными математическими курсами (алгебры, дифференциальной геометрии, дифференциальных уравнений, комплексного и функционального анализа).
В первую часть вошло: введение в анализ (логическая символика, множество, функция, вещественное число, предел, непрерывность); дифференциальное и интегральное исчисление функции одной переменной; дифференциальное исчисление функций многих переменных.
Во вторую часть учебника включены следующие разделы: Многомерный интеграл. Дифференциальные формы и их интегрирование. Ряды и интегралы, зависящие от параметра (в том числе ряды и преобразования Фурье, а также асимптотические разложения).

Пособия по решению задач.

NEW. Садовнничая и.в.,Хорошилова Е.В. Определеннй интеграл: теория и практика вычислений. 2008 год. 528 стр. djvu. 2.7 Мб.
Издание посвящено теоретическим и практическим аспектам вычисления определенных интегралов, а также методам их оценок, свойствам и приложениям к решению различных геометрических и физических задач. Книга содержит разделы, посвященные методам вычисления собственных интегралов, свойствам несобственных интегралов, геометрическим и физическим приложениям определённого интеграла, а также некоторым обобщениям интеграла Римана - интегралам Лебега и Стилтьеса.
Изложение теоретического материала подкреплено большим количеством (более 220) разобранных примеров вычисления, оценок и исследования свойств определённых интегралов; в конце каждого параграфа приводятся задачи для самостоятельного решения (более 640, подавляющее большинство - с решениями).
Цель пособия - помочь студенту во время прохождения темы «Определенный интеграл» на лекциях и практических занятиях. К нему может обратиться студент для получения справочной информации по возникшему вопросу. Книга также может быть полезна преподавателям и всем желающим изучить данную тему достаточно подробно и широко.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

NEW. Хорошилова Е.В. Математический анализ: неопределенный интеграл. (в помощь практическим занятиям). 2007 год. 184 стр. djvu. 822 Кб.
В книге приводятся основные теоретические сведения о неопределённых интегралах, рассмотрено большинство известных приёмов и методов интегрирования и различные классы интегрируемых функций (с указанием способов интегрирования). Изложение материала подкреплено большим количеством разобранных примеров вычисления интегралов (более 200 интегралов), в конце каждого параграфа приводятся задачи для самостоятельного решения (более 200 задач с ответами).
Пособие содержит следующие параграфы: «Понятие неопределённого интеграла», «Основные методы интегрирования», «Интегрирование рациональных дробей», «Интегрирование иррациональных функций», «Интегрирование тригонометрических функций», «Интегрирование гиперболических, показательных, логарифмических и других трансцендентных функций». Книга предназначена для освоения на практике теории неопределённого интеграла, выработки навыков практического интегрирования, закрепления курса лекций, использования на семинарах и во время подготовки домашних заданий. Цель пособия - помочь студенту в освоении различных приёмов и методов интегрирования.
Для студентов университетов, в том числе математических специальностей, изучающих интегральное исчисление в рамках курса математического анализа.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

NEW. В.Ф. Бутузов, Н.Ч. Крутицкая, Г.Н. Медведев, А.А. Шишкин. Математический анализ в вопросах и задачах: Учеб. пособие. 5-е изд., испр. 2002 год. 480 стр. djvu. 3.8 Мб.
Пособие охватывает все разделы курса математического анализа функций одной и нескольких переменных. По каждой теме кратко излагаются основные теоретические сведения и предлагаются контрольные вопросы; приводятся решения стандартных и нестандартных задач; даются задачи и упражнения для самостоятельной работы с ответами и указаниями. Четвертое издание 2001 г.
Для студентов высших учебных заведений.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

А.А. Бурцев. Методы решения экзаменационных задач по математическому анализу 2-го семестра 1-го курса. 2010 год. pdf, 56 стр. 275 Kб.
Варианты задач за четыре предш. года.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Виноградова И. А. и др. Задачи и упражнения по математическому анализу (часть1). 1988 год. djvu, 416 стр. 5.0 Мб.
Сборник составлен на материале занятий по курсу математического анализа на I курсе механико-математического факультета МГУ и отражает опыт преподавания кафедры математического анализа. Он состоит из двух частей, соответствующих I и II семестру. В каждой части отдельно выделены вычислительные упражнения и теоретические задачи. Первая часть включает построение эскизов графиков функций, вычисление пределов, дифференциальное исчисление функций одного действительного переменного, теоретические задачи. Вторая часть - неопределенный интеграл,определенный интеграл Римана, дифференциальное исчисление функций многих переменных, теоретические задачи. В главах, содержащих вычислительные упражнения, каждый параграф предваряется развернутыми методическими указаниями. В них даны все используемые в этом параграфе определения, формулировки основных теорем, вывод некоторых необходимых соотношений, приведены подробные решения характерных задач, обращено внимание на часто встречающиеся ошибки. Большая часть задач и упражнений отлична от задач, содержащихся в известном задачнике Б. П. Демидовича. В обе части сборника включено около 1800 упражнений на вычисления и 350 теоретических задач.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Виноградова И. А. и др. Задачи и упражнения по математическому анализу (часть2). 1991 год. djvu, 352 стр. 3.2 Мб.
Задачник соответствует курсу математического анализа, излагаемого на втором курсе, и содержит следующие разделы: двойной и тройной интегралы и их геометрические и физические приложения, криволинейный и поверхностный интеграл первого и второго рода. Приводятся необходимые теоретические сведения, типичные алгоритмы, пригодные для решения целых классов задач, даны подробные методические указания.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Виноградова и др. Под ред. Садовничего. Задачи и упражнения по математическому анализу. 51 стр. PDF. 1.9 Мб.
Очень подробно рассмотрен раздел построение графиков. 35 стр. занимают рассмотренные примеры.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Желтухин. Неопределенные интегралы: методы вычисления. 2005 год. Размер 427 Кб. PDF, 80 стр. Полезное пособие, можно использовать как справочник. В нем не только привндены все методы вычисления интегралов, но и приведено масса примеров на каждое правило. Рекомендую.

Скачать

Запоржец. Руководство к решению задач по математическому анализу. 4-е изд. 460 стр. djvu. 7.7 Мб.
Охватывает все разделы от исследования функций до решения дифуравнений. Полезная книга.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Калинин, Петрова, Харин. Неопределенные и определенные интегралы. 2005 год. 230 стр. PDF. 1.2 Мб.
Наконец-то, математики стали писать книжки для физиков и других студентов технических специальностей, а не сами для себя. Рекомендую, если хотите научиться вычислять, а не доказывать леммы и теоремы.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Калинин, Петрова. Кратные, криволинейные и поверхностные интегралы. Учебное пособие. 2005 год. 230 стр. PDF. 1.2 Мб.
В этом пособии приведены прмеры вычисления различных интегралов.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Каплан. Практические занятия по высшей математике. Аналитическая геометрия, диффернциальное исчисление, интегральное исчисление, интегрирование дифуравнений. В 2-файлах в одном архиве. Общие 925 стр. djvu. 6.9 Мб.
Рассмотрены примеры решения задач по всему курсу общей математики.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

К.Н. Лунгу, и др. Сборник задач по высшей математике. Часть 2 для 2-го курса. 2007 год. djvu, 593 стр.4.1 Мб.
Ряды и интегралы. Векторный и комплексный анализ. Дифференциальные уравнения. Теория вероятностей. Операционное исчисление. Это не просто задачник, но и самоучитель. По нему можно научиться решать задачи.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Лунгу, Макаров. Высшая математика. Руководство к решению задач. Часть 1. 2005 год. Размер 2.2 Мб. djvu, 315 стр.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

И.А. Марон. Дифференциальное и интегральное исчисление в примерах и задачах (Функции одной переменной). 1970 год. djvu. 400 стр. 11.3 Мб.
Книга представляет собой пособие по решению задач математического анализа (функции одной переменной). Содержит краткие теоретические введения, решения типовых примеров и задачи для самостоятельного решения. Кроме задач алгоритмически-вычислительного характера, в ней содержится много задач, иллюстрирующих теорию и способствующих более глубокому ее усвоению, развивающих самостоятельное математическое мышление учащихся. Цель книги-научить студентов самостоятельно решать задачи по курсу математического анализа

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Д.Т. Письменный. Высшая математика 100 экзаменационных вопросов. 1999 год. djvu. 304 стр. 9.3 Мб.
Настоящее пособие предназначено, в первую очередь, для студентов, готовящихся к сдаче экзамена по высшей математике на 1-м курсе. Оно содержит изложенные в краткой к доступной форме ответы на экзаменационные вопросы устного экзамена. Пособие может быть полезным для всех категорий студентов, изучающих в том или ином объеме высшую математику. Оно содержит необходимый материал по 10-ти разделам курса высшей математики, которые обычно изучаются студентами ва первом курсе вуза (техникума). Ответы на 108 экзаменационных вопросов (с подпунктами - значительно больше) сопровождаются, как правило, решением соответствующих примеров и задач.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Соболь Б.В., Мишняков Н.Т., Поркшеян В.М. Практикум по высшей математике. 2006 год. 630 стр. djvu. 5.4 Мб.
В книгу вошли все разделы стандартного курса высшей математики для широкого спектра специальностей высших учебных заведений.
Каждая глава (соответствующий раздел курса) содержит справочный материал, а также основные теоретические положения, необходимые для решения задач. Отличительной особенностью данного издания является большое количество задач с решениями, что позволяет использовать его не только для аудиторных занятий, но и для самостоятельной работы студентов. Задачи представлены по темам, систематизированы по методам решения. Завершают каждую главу наборы заданий для самостоятельного решения, снабженные ответами.
Полнота изложения материала и относительная компактность данного издания позволяют рекомендовать его преподавателям и студентам высших учебных заведений, а также слушателям институтов повышения квалификации, желающим систематизировать свои знания и навыки по этому предмету.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

Е.П. Суляндзига, Г.А. Ушакова. ТЕСТЫ ПО МАТЕМАТИКЕ: ПРЕДЕЛ, ПРОИЗВОДНАЯ, ЭЛЕМЕНТЫ АЛГЕБРЫ И ГЕОМЕТРИИ. Уч. пособие. 2009 год. pdf, 127 стр. 1.1 Мб.
Предлагаемое учебное пособие можно рассматривать как сборник задач. Задачи охватывают традиционные темы – основы математического анализа: функцию, ее предел и производную. Присутствуют задачи по основам линейной алгебры и аналитической геометрии. Поскольку предел и производная функции являются более трудными, и кроме того, эти темы являются фундаментальными для интегрального исчисления, то им уделено наибольшее внимание: подробно разобраны решения типовых задач. Собранный в учебном пособии материал неоднократно использовался на практических занятиях.
Для студентов первого курса всех вузов.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Скачать

М.: Изд-во МГУ. Ч.1 : 2-е изд., перераб., 1985. - 662с.; Ч.2 - 1987. - 358с.

Ч. 1. - Начальный курс.

Учебник представляет собой первую часть курса математического анализа для высших учебных заведений СССР, Болгарии и Венгрии, написанного в соответствии с соглашением о сотрудничестве между Московским, Софийским и Будапештским университетами. Книга включает в себя теорию вещественных чисел, теорию пределов, теорию непрерывности функций, дифференциальное и интегральное исчисления функций одной переменной и их приложения, дифференциальное исчисление функций многих переменных и теорию неявных функций.

Ч. 2. - Продолжение курса.

Учебник представляет собой вторую часть (ч. 1 - 1985 г.) курса математического анализа, написанного в соответствии с единой программой, принятой в СССР и НРБ. В книге рассмотрены теория числовых и функциональных рядов, теория кратных, криволинейных и поверхностных интегралов, теория поля (включая дифференциальные формы), теория интегралов, зависящих от параметра, и теория рядов и интегралов Фурье. Особенность книги - три четко отделяемых друг от друга уровня изложения: облегченный, основной и повышенный, что позволяет использовать ее как студентам технических вузов с углубленным изучением математического анализа, так и студентам механико-математических факультетов университетов.

Ч. 1. - Начальный курс.

Формат: pdf

Размер: 10,5 Мб

Смотреть, скачать: drive.google

Формат: djvu / zip

Размер: 5 ,5 Мб

/ Download файл

Ч. 2. - Продолжение курса.

Формат: pdf

Размер: 14,8 Мб

Смотреть, скачать: drive.google

Формат: djvu / zip

Размер: 3,1 Мб

/ Download файл

Ч. 1. - Начальный курс.

ОГЛАВЛЕНИЕ
Предисловие титульного редактора.... 5
Предисловие ко второму изданию 6
Предисловие к первому изданию 6
Глава 1. ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО АНАЛИЗА 10
Глава 2. ВЕЩЕСТВЕННЫЕ ЧИСЛА 29
§ 1. Множество чисел, представимых бесконечными десятичными дробями, и его упорядочение 29
1. Свойства рациональных чисел (29). 2. Недостаточность рациональных чисел для измерения отрезков числовой оси (31). 3. Упорядочение множества бесконечных десятичных
дробей (34)
§ 2. Ограниченные сверху (или снизу) множества чисел, представимых бесконечными десятичными дробями.... 40 1. Основные понятия (40). 2. Существование точных граней (41).
§ 3. Приближение чисел, представимых бесконечными десятичными дробями, рациональными числами 44
§ 4. Операции сложения и умножения. Описание множества вещественных чисел 46
1. Определение операций сложения и умножения. Описание понятия вещественных чисел (46). 2. Существование и единственность суммы и произведения вещественных чисел (47).
§ 5. Свойства вещественных чисел 50
1. Свойства вещественных чисел (50). 2. Некоторые часто употребляемые соотношения (52). 3. Некоторые конкретные множества вещественных чисел (52).
§ 6. Дополнительные вопросы теории вещественных чисел. .54 1. Полнота множества вещественных чисел (54). 2. Аксиоматическое введение множества вещественных чисел (57).
§ 7. Элементы теории множеств. 59
1. Понятие множества (59). 2. Операции над множествами (60). 3. Счетные и несчетные множества. Несчетность сегмента . Мощность множества (61). 4. Свойства операции над множествами. Отображение множеств (65).
Г л а в а 3. ТЕОРИЯ ПРЕДЕЛОВ. 68
§ 1. Последовательность и ее предел 68.
1. Понятие последовательности. Арифметические операции над последовательностями (68). 2. Ограниченные, неограниченные, бесконечно малые и бесконечно большие последовательности (69). 3. Основные свойства бесконечно малых последовательностей (73). 4. Сходящиеся последовательности и их свойства (75).
§ 2. Монотонные последовательности 83
1. Понятие монотонной последовательности (83). 2. Теорема о сходимости монотонной ограниченной последовательности (84). 3. Число е (86). 4. Примеры сходящихся монотонных последовательностей (88).
§ 3. Произвольные последовательности 92
1. Предельные точки, верхний и нижний пределы последовательности (92). 2. Расширение понятий предельной точки и верхнего и нижнего пределов (99). 3. Критерий Коши сходимости последовательности (102).
§ 4. Предел (или предельное значение) функции 105
1. Понятия переменной величины и функции (105). 2. Предел функции по Гейне и по Коши (109). 3. Критерий Коши существования предела функции (115). 4. Арифметические операции над функциями, имеющими предел (118). 5. Бесконечно малые и бесконечно большие функции (119).
§ 5. Общее определение предела функции по базе.... 122
Глава 4. НЕПРЕРЫВНОСТЬ ФУНКЦИИ 127
§ 1. Понятие непрерывности функции 127
1. Определение непрерывности функции (127). 2. Арифметические операции над непрерывными функциями (131). 3. Сложная функция и ее непрерывность (132).
§ 2. Свойства монотонных функций 132
1. Монотонные функции (132). 2. Понятие обратной функции (133).
§ 3. Простейшие элементарные функции 138
1. Показательная функция (138). 2. Логарифмическая функция (145). 3. Степенная функция (146). 4. Тригонометрические функции (147). 5. Обратные тригонометрические функции (154). 6. Гиперболические функции (156).
§ 4. Два замечательных предела 158
1. Первый замечательный предел (158). 2. Второй замечательный предел (159).
§ 5. Точки разрыва функции и их классификация. . . . 162 1. Классификация точек разрыва функции (162). 2. О точках разрыва монотонной функции (166).
§ 6. Локальные и глобальные свойства непрерывных функций. 167 1. Локальные свойства непрерывных функций (167). 2. Глобальные свойства непрерывных функций (170). 3. Понятие равномерной непрерывности функции (176). 4. Понятие модуля непрерывности функции (181).
§ 7. Понятие компактности множества 184
1. Открытые и замкнутые множества (184). 2. О покрытиях множества системой открытых множеств (184). 3. Понятие компактности множества (186).
Г л а в а 5. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ 189
§ 1. Понятие производной 189
1. Приращение функции. Разностная форма условия непрерывности (189). 2. Определение производной (190). 3. Геометрический смысл производной (192).
§ 2. Понятие дифференцируемости функции 193
1. Определение дифференцируемости функции (193). 2. Дифференцируемость и непрерывность (195). 3. Понятие дифференциала функции (196).
§ 3. Дифференцирование сложной функции и обратной функции 197 1. Дифференцирование сложной функции (197). 2. Дифференцирование обратной функции (199). 3. Инвариантность формы первого дифференциала (200). 4. Применение дифференциала для установления приближенных формул (201).
§ 4. Дифференцирование суммы, разности, произведения и частного функций 202
§ 5. Производные простейших элементарных функций. . . 205 1. Производные тригонометрических функций (205). 2. Производная логарифмической функции (207). 3. Производные показательной и обратных тригонометрических функций (208). 4. Производная степенной функции (210). 5. Таблица производных простейших элементарных функций (210). 6. Таблица дифференциалов простейших элементарных функций (212). 7. Логарифмическая производная. Производная степенно-показательной функции (212).
§ 6. Производные и дифференциалы высших порядков. . . 215 1. Понятие производной л-го порядка (213). 2. п-е производные некоторых функций (214). 3. Формула Лейбница для я-й производной произведения двух функций (216). 4. Дифференциалы высших порядков (218).
§ 7. Дифференцирование функции, заданной параметрически. 220*
§ 8. Производная векторной функции 222
Глава 6. ОСНОВНЫЕ ТЕОРЕМЫ О ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЯХ 224
§ 1. Возрастание (убывание) функции в точке. Локальный экстремум 224
§ 2. Теорема о нуле производной 226
§ 3. Формула конечных приращений (формула Лагранжа) . . 227 § 4. Некоторые следствия из формулы Лагранжа.... 229» 1. Постоянство функции, имеющей на интервале равную нулю производную (229). 2. Условия монотонности функции на интервале (230). 3. Отсутствие разрывов первого рода и устранимых разрывов у производной (231). 4. Вывод некоторых неравенств (233). § 5. Обобщенная формула конечных приращений (формула Коши) . . 234
§ 6. Раскрытие неопределенностей (правило Лопиталя) . . . 235
1. Раскрытие неопределенности вида (235). Раскрытие неопределенности вида - (240). 3. Раскрытие неопределенностей других видов (243).
!§ 7. Формула Тейлора « 245
§ 8. Различные формы остаточного члена. Формула Маклорена 248
1. Остаточный член в форме Лагранжа, Коши и Пеано (248).
2. Другая запись формулы Тейлора (250). 3. Формула Маклорена (251).
§ 9. Оценка остаточного члена. Разложение некоторых элементарных функций. . . . . 251
1. Оценка остаточного члена для произвольной: функции (251). 2. Разложение по формуле Маклорена некоторых элементарных функций (252).
1§ 10. Примеры приложений формулы Маклорена 256.
1. Вычисление числа е на ЭВМ (256). 2. Доказательство иррациональности числа е (257). 3. Вычисление значений тригонометрических функций (258). 4. Асимптотическая оценка элементарных функций и вычисление пределов (259).
Глава 7. ИССЛЕДОВАНИЕ ГРАФИКА ФУНКЦИИ И ОТЫСКАНИЕ ЭКСТРЕМАЛЬНЫХ ЗНАЧЕНИИ 262
§ 1. Отыскание стационарных точек 262
1. Признаки монотонности функции (262). 2. Отыскание стационарных точек (262). 3. Первое достаточное условие экстремума (264). 4. Второе достаточное условие экстремума "(265). 5. Третье достаточное условие экстремума (267). 6. Экстремум функции, недифференцируемой в данной точке (268). 7. Общая схема отыскания экстремумов (270).
§ 2. Выпуклость графика функции 271
§ 3. Точки перегиба 273
1. Определение точки перегиба. Необходимое условие перегиба (273). 2. Первое достаточное условие перегиба (276). 3. Некоторые обобщения первого достаточного условия перегиба (276). 4. Второе достаточное условие перегиба (277). 5. Третье достаточное условие перегиба (278).
§ 4. Асимптоты графика функции 279
§ 5. Построение графика функции 281
§ 6. Глобальные максимум и минимум функции на сегменте.
Краевой экстремум 284
1. Отыскание максимального и минимального значений функции, определенной на сегменте (284). 2. Краевой экстремум (286). 3. Теорема Дарбу (287). Дополнение. Алгоритм отыскания экстремальных значений функции, использующий только значения этой функции. . . 288
Глава 8. ПЕРВООБРАЗНАЯ ФУНКЦИЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 291
§ 1. Понятие первообразной функции и неопределенного интеграла 291 1. Понятие первообразной функции (291). 2. Неопределенный интеграл (292). 3."Основные свойства неопределенного интеграла (293). 4. Таблица основных неопределенных интегралов (294).
§ 2. Основные методы интегрирования 297
1, Интегрирование замены переменной (подстановкой) (297).
2. Интегрирование по частям (300).
§ 3. Классы функций, интегрируемых в элементарных функциях. 303 1. Краткие сведения о комплексных числах (304). 2. Краткие сведения о корнях алгебраических многочленов (307). 3. Разложение алгебраического многочлена с вещественными коэффициентами на произведение неприводимых множителей (311). 4. Разложение правильной рациональной дроби на сумму простейших дробей (312). 5. Интегрируемость рациональной дроби в элементарных функциях (318). 6. Интегрируемость в элементарных функциях некоторых тригонометрических и иррациональных выражений (321).
§ 4. Эллиптические интегралы, 327
Глава 9. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ РИМАНА 330
§ 1. Определение интеграла. Интегрируемость. . . . . 330 § 2. Верхние и нижние суммы и их свойства. . . . . 334 1. Определение верхней и нижней сумм (334). 2. Основные свойства верхних и нижних сумм (335). § 3. Теоремы о необходимых и достаточных условиях интегрируемости функций. Классы интегрируемых функций. . . 339
1. Необходимые и достаточные условия интегрируемости (339).
2. Классы интегрируемых функций (341).
"§ 4. Свойства определенного интеграла. Оценки интегралов. Теоремы о среднем значении. 347
1. Свойства интеграла (347). 2. Оценки интегралов (350).
§ 5. Первообразная непрерывной функции. Правила интегрирования функций 357
1. Первообразная (357). 2. Основная формула интегрального исчисления (359). 3. Важные правила, позволяющие вычислять определенные интегралы (360). 4. Остаточный член формулы Тейлора в интегральной форме (362).
§ 6. Неравенство для сумм и интегралов 365
1. Неравенство Юнга (365). 2. Неравенство Гёльдера для сумм (366). 3. Неравенство Минковского для сумм (367). 4. Неравенство Гёльдера для интегралов (367). 5. Неравенство Минковского для интегралов (368).
§ 7. Дополнительные сведения об определенном интеграле Римана 369
1. Предел интегральных сумм по базису фильтра (369).
2. Критерий интегрируемости Лебега (370).
Дополнение 1. Несобственные интегралы 370
§ 1. Несобственные интегралы первого рода 371
1. Понятие несобственного интеграла первого рода (371).
2. Критерий Коши сходимости несобственного интеграла первого рода. Достаточные признаки сходимости (373). 3. Абсолютная и условная сходимость несобственных интегралов (375). 4. Замена переменных под знаком несобственного интеграла и формула интегрирования по частям (378).
§ 2. Несобственные интегралы второго рода 379
§ 3. Главное значение несобственного интеграла.. 382
Дополнение 2. Интеграл Стилтьеса 384
1. Определение интеграла Стилтьеса и условия его существования (384). 2. Свойства интеграла Стилтьеса (389).
Глава 10. ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА 391
§ 1. Длина дуги кривой 391
1. Понятие простой кривой (391). 2. Понятие параметризуемой кривой (392). 3. Длина дуги кривой. Понятие спрямляемой кривой (394). 4. Критерий спрямляемости кривой. Вычисление длины дуги кривой (397). 5. Дифференциал дуги (402). 6. Примеры (403).
!§ 2. Площадь плоской фигуры 405
1. Понятие границы множества и плоской фигуры (405).
2. Площадь плоской фигуры (406). 3. Площадь криволинейной
трапеции и криволинейного сектора (414). 4. Примеры вычисления площадей (416).
§ 3. Объем тела в пространстве 418
1. Объем тела (418). 2. Некоторые классы кубируемых тел (419). 3. Примеры (421).
Глава 11. ПРИБЛИЖЕННЫЕ МЕТОДЫ ВЫЧИСЛЕНИЯ КОРНЕЙ УРАВНЕНИИ И ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ... 422
§ 1. Приближенные методы вычисления корней уравнений. . 422 1. Метод «вилки» (422). 2. Метод итераций (423). 3. Методы хорд и касательных (426).
§ 2. Приближенные методы вычисления определенных интегралов 431 1. Вводные замечания (431). 2. Метод прямоугольников (434).
3. Метод трапеций (436). 4. Метод парабол (438).
Глава 12. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ.... 442
§ 1. Понятие функции т переменных 442
1. Понятие m-мерного координатного и гамерного евклидова пространств (442). 2. Множества точек m-мерного евклидова пространства (445). 3. Понятие функции т переменных (449).
§ 2. Предел функции га переменных 451
1. Последовательности точек пространства Ет (451). 2. Свойство ограниченной последовательности точек Ет (454). 3. Предел функции т переменных (455). 4. Бесконечно малые функции т переменных (458). 5. Повторные пределы (459).
§ 3. Непрерывность функции га переменных 460
1. Понятие непрерывности функции m переменных (460).
2. Непрерывность функции т переменных по одной переменной (462). 3. Основные свойства непрерывных функций нескольких переменных (465).
§ 4. Производные и дифференциалы функции нескольких переменных 469
1. Частные производные функции нескольких переменных (469). 2. Дифференцируемость функции нескольких переменных (470). 3. Геометрический смысл условия дифференцируемое функции двух переменных (473). 4. Достаточные условия дифференцируемости (474). 5. Дифференциал функции нескольких переменных (476). 6. Дифференцирование сложной функции (476). 7. Инвариантность формы первого дифференциала (480). 8. Производная по направлению. Градиент (481).
§ 5. Частные производные и дифференциалы высших порядков.. 485 1. Частные производные высших порядков (485). 2. Дифференциалы высших порядков (490). 3. Формула Тейлора с остаточным членом в форме" Лагранжа и в интегральной форме (497). 4. Формула Тейлора с остаточным членом в форме Пеано (500).
6. Локальный экстремум функции т переменных.... 504 1. Понятие экстремума функции т переменных. Необходимые условия экстремума (504). 2. Достаточные условия локального экстремума функции га переменных (506). 3. Случай функции двух переменных (512).
Дополнение 1. Градиентный метод поиска экстремума сильно выпуклой функции 514
1. Выпуклые множества и выпуклые функции (515). 2. Существование минимума у сильно выпуклой функции и единственность минимума у строго выпуклой функции (521).
3. Поиск минимума сильно выпуклой функции (526).
Дополнение 2. Метрические, нормированные пространства. . 535
Метрические пространства. 1. Определение метрического пространства. Примеры (535). 2. Открытые и замкнутые множества (538). 3. Прямое произведение метрических пространств (540). 4. Всюду плотные и совершенные множества (541). 5. Сходимость. Непрерывные отображения (543). 6. Компактность (545). 7. Базис пространства (548).
Свойства метрических пространств 550
Топологические пространства 558
1. Определение топологического пространства. Хаусдорфово топологическое пространство. Примеры (558). 2. Замечание о топологических пространствах (562).
Линейные нормированные пространства, линейные операторы 564
1. Определение линейного пространства. Примеры (564).
2. Нормированные пространства. Банаховы пространства.
Примеры (566). 3. Операторы в линейных и нормированных пространствах (568). 4. Пространство операторов (569).
5. Норма оператора (569). 6. Понятие гильбертова пространства (572).
Дополнение 3. Дифференциальное исчисление в линейных нормированных пространствах. 574
1. Понятие дифференцируемое. Сильная и слабая дифференцируемость в линейных нормированных пространствах (575).
2. Формула Лагранжа конечных приращений (581).
3. Связь между слабой и сильной дифференцируемостью (584). 4. Дифференцируемость функционалов (587). 5. Интеграл от абстрактных функций (587). 6. Формула Ньютона-Лейбница для абстрактных функций (589). 7. Производные второго порядка (592). 8. Отображение т-мерного евклидова пространства в га-мерное (595). 9. Производные и дифференциалы высших порядков (598). 10. Формула Тейлора для отображения одного нормированного пространства в другое (599).
Исследование на экстремум функционалов в нормированных
пространствах. 602
1. Необходимое условие экстремума (602). 2. Достаточные условия экстремума (605).
Глава 13. НЕЯВНЫЕ ФУНКЦИИ 609
§ 1. Существование и дифференцируемость неявно заданной функции 610
1. Теорема о существовании и дифференцируемости неявной функции (610). 2. Вычисление частных производных неявно заданной функции (615). 3. Особые точки поверхности и плоской кривой (617). 4. Условия, обеспечивающие существование для функции у=}{х) обратной функции (618).
§ 2. Неявные функции, определяемые системой функциональных
уравнений 619
1. Теорема о разрешимости системы функциональных уравнений (619). 2. Вычисление частных производных функций, неявно определяемых посредством системы функциональных уравнений (624). 3. Взаимно однозначное отображение двух множеств m-мерного пространства (625).
§ 3. Зависимость функций 626
1. Понятие зависимости функций. Достаточное условие независимости (626). 2. Функциональные матрицы и их приложения (628).
§ 4. Условный экстремум. 632
1. Понятие условного экстремума (632). 2. Метод неопределенных множителей Лагранжа (635). 3. Достаточные. условия (636). 4. Пример (637).
Дополнение 1. Отображения банаховых пространств. Аналог теоремы о неявной функции 638
1. Теорема о существовании и дифференцируемости неявной функции (638). 2. Случай конечномерных пространств (644). 3. Особые точки поверхности в пространстве п измерений. Обратное отображение (647). 4. Условный экстремум в случае отображений нормированных пространств (651).


Ч. 2. - Продолжение курса.

ОГЛАВЛЕНИЕ
Предисловие 5
ГЛАВА 1. ЧИСЛОВЫЕ РЯДЫ 7
§ 1. Понятие числового ряда 7
1. Сходящиеся и расходящиеся ряды (7). 2. Критерий Коши сходимости ряда (10)
§ 2. Ряды с неотрицательными членами 12"
1. Необходимое и достаточное условие сходимости ряда с неотрицательными членами (12). 2. Признаки сравнения (13). 3. Признаки Даламбера и Коши (16). 4. Интегральный признак Коши - Мак-лорена (21). 5, Признак Раабе (24). 6. Отсутствие универсального ряда сравнения (27)
§ 3. Абсолютно и условно сходящиеся ряды 28
1. Понятия абсолютно и условно сходящихся рядов (28). 2. О перестановке членов условно сходящегося ряда (30). 3. О перестановке членов абсолютно сходящегося ряда (33)
§ 4. Признаки сходимости произвольных рядов 35
§ 5. Арифметические операции над сходящимися рядами 41
§ 6. Бесконечные произведения 44
1. Основные понятия (44). 2. Связь между сходимостью бесконечных произведений и рядов (47). 3. Разложение функции sin x в бесконечное произведение (51)
§ 7. Обобщенные методы суммирования расходящихся рядов.... 55
1. Метод Чезаро (метод средних арифметических) (56). 2. Метод суммирования Пуассона - Абеля (57)
§ 8. Элементарная теория двойных и повторных рядов 59
ГЛАВА 2. ФУНКЦИОНАЛЬНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И РЯДЫ 67
§ 1. Понятия сходимости в точке и равномерной сходимости на множестве 67
1. Понятия функциональной последовательности и функционального ряда (67). 2. Сходимость функциональной последовательности (функционального ряда) в точке и на множестве (69). 3. Равномерная сходимость на множестве (70). 4. Критерий Коши равномерной сходимости последовательности (ряда) (72)
§ 2. Достаточные признаки равномерной сходимости функциональных последовательностей и рядов 74
§ 3. Почленный переход к пределу 83
§ 4. Почленное интегрирование и почленное дифференцирование функциональных последовательностей и рядов 87
1. Почленное интегрирование (87). 2. Почленное дифференцирование (90). 3. Сходимость в среднем (94)
§ 5. Равностепенная непрерывность последовательности функций... 97
§ 6. Степенные ряды 102
1. Степенной ряд и область его сходимости (102). 2. Непрерывность суммы степенного ряда (105). 3. Почленное интегрирование и почленное дифференцирование степенного ряда (105)
§ 7. Разложение функций в степенные ряды 107
1. Разложение функции в степенной ряд (107). 2. Разложение некоторых элементарных функций в ряд Тейлора (108). 3. Элементарные представления о функциях комплексной переменной (ПО). 4. Теорема Вейерштрасса о равномерном приближении непрерывной функции многочленами (112)
ГЛАВА 3. ДВОЙНЫЕ И n-КРАТНЫЕ ИНТЕГРАЛЫ 117
§ 1. Определение и условия существования двойного интеграла. . . 117
1. Определение двойного интеграла для прямоугольника (117).
2. Условия существования двойного интеграла для прямоугольника (119). 3. Определение и условия существования двойного интеграла для произвольной области (121). 4. Общее определение двойного интеграла (123)
"§ 2. Основные свойства двойного интеграла 127
§ 3. Сведение двойного интеграла к повторному однократному. . . 129 1. Случай прямоугольника (129). 2. Случай произвольной области (130)
§ 4. Тройные и n -кратные интегралы 133
§ 5. Замена переменных в n -кратном интеграле 138
§ 6. Вычисление объемов n-мерных тел 152
§ 7. Теорема о почленном интегрировании функциональных последовательностей и рядов 157
$ 8. Кратные несобственные интегралы 159
1. Понятие кратных несобственных интегралов (159). 2. Два признака сходимости несобственных интегралов от неотрицательных функций (160). 3. Несобственные интегралы от знакопеременных функций (161). 4. Главное значение кратных несобственных интегралов (165)
ГЛАВА 4. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 167
§ 1. Понятия криволинейных интегралов первого и второго рода. . . 167
§ 2. Условия существования криволинейных интегралов 169
ГЛАВА 5. ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ 175
§ 1. Понятия поверхности и ее площади 175
1. Понятие поверхности (175). 2. Вспомогательные леммы (179).
3. Площадь поверхности (181)
§ 2. Поверхностные интегралы 185
ГЛАВА 6. ТЕОРИЯ ПОЛЯ. ОСНОВНЫЕ ИНТЕГРАЛЬНЫЕ ФОРМУЛЫ АНАЛИЗА 190
§ 1. Обозначения. Биортогональные базисы. Инварианты линейного оператора 190
1. Обозначения (190). 2. Биортогональные базисы в пространстве Е" (191). 3. Преобразования базисов. Ковариантные и контрвариантные координаты вектора (192). 4. Инварианты линейного оператора. Дивергенция и ротор (195). 5. Выражения для дивергенции и ротора линейного оператора в ортонормированном базисе (Щ8)
§ 2. Скалярные и векторные поля. Дифференциальные операторы векторного анализа 198
!. Скалярные и векторные поля (198). 2. Дивергенция, ротор и производная по направлению векторного поля (203). 3. Некоторые другие формулы векторного анализа (204). 4. Заключительные замечания (206)
§ 3. Основные интегральные формулы анализа 207
1. Формула Грина (207). 2. Формула Остроградского - Гаусса (211). 3. Формула Стокса (214)
§ 4. Условия независимости криволинейного интеграла на плоскости отпути интегрирования 218
§ 5. Некоторые примеры приложений теории поля 222
1. Выражение площади плоской области через криволинейный интеграл (222). 2. Выражение объема через поверхностный интеграл (223)
Дополнение к главе 6. Дифференциальные формы в евклидовом пространстве 225
§ 1. Знакопеременные полилинейные формы 225
1. Линейные формы (225). 2. Билинейные формы (226). 3. Полилинейные формы (227). 4. Знакопеременные полилинейные формы (228). 5. Внешнее произведение знакопеременных форм (228). 6. Свойства внешнего произведения знакопеременных форм (231). 7. Базис в пространстве знакопеременных форм (233)
§ 2. Дифференциальные формы 235
1. Основные обозначения (235). 2. Внешний дифференциал (236). 3. Свойства внешнего дифференциала (237;)
§ 3. Дифференцируемые отображения 2391
1. Определение дифференцируемых отображений (239). 2. Свойства отображения ф* (240)
§ 4. Интегрирование дифференциальных форм 243
1. Определения (243). 2. Дифференцируемые цепи (245). 3. Форму¬ла Стокса (248). 4. Примеры (250)
ГЛАВА 7. ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРОВ 252
§ 1. Равномерное по одной переменной стремление функции двух переменных к пределу по другой переменной 252
1. Связь равномерного по одной переменной стремления функции двух переменных к пределу по другой переменной с равномерной сходимостью функциональной последовательности (252). 2. Критерий Коши равномерного стремления функции к предельной (254). 3. Применения понятия равномерного стремления к предельной функции (254)
§ 2. Собственные интегралы, зависящие от параметра 256
1. Свойства интеграла, зависящего от параметра (256). 2. Случай, когда пределы интегрирования зависят от параметра (257)
§ 3. Несобственные интегралы, зависящие от параметра 259
1. Несобственные интегралы первого рода, зависящие от параметра (260). 2. Несобственные интегралы второго рода, зависящие от параметра (266)
§ 4. Применение теории интегралов, зависящих от параметра, к вычислению некоторых несобственных интегралов 267
§ 5. Интегралы Эйлера 271
к Г-функция (272). 2. В-функция (275). 3. Связь между эйлеровыми интегралами (277). 4. Примеры (279)
§ 6. Формула Стирлинга 280
§ 7. Кратные интегралы, зависящие от параметров 282
1. Собственные кратные интегралы, зависящие от параметров (282).
2. Несобственные кратные интегралы, зависящие от параметра (283)
ГЛАВА 8. РЯДЫ ФУРЬЕ 287
§ 1. Ортонормированные системы и общие ряды Фурье 287
1. Ортонормированные системы (287). 2. Понятие об общем ряде Фурье (292)
§ 2. Замкнутые и полные ортонормированные системы 295
§ 3. Замкнутость тригонометрической системы и следствия из нее. . 298 1. Равномерное приближение непрерывной функции тригонометрическими многочленами (298). 2. Доказательство замкнутости тригонометрической системы (301). 3. Следствия замкнутости тригонометрической системы (303)
§ 4. Простейшие условия равномерной сходимости и почленного дифференцирования тригонометрического ряда Фурье 304
1. Вводные замечания (304). 2. Простейшие условия абсолютной и равномерной сходимости тригонометрического ряда Фурье (306).
3. Простейшие условия почленного дифференцирования тригонометрического ряда Фурье (308)
§ 5. Более точные условия равномерной сходимости и условия сходимости в данной точке 309>
1. Модуль непрерывности функции. Классы Гёльдера (309). 2. Выражение для частичной суммы тригонометрического ряда Фурье (311). 3. Вспомогательные предложения (314). 4. Принцип локализации (317). 5. Равномерная сходимость тригонометрического ряда Фурье для функции из класса Гёльдера (319). 6. О сходимости тригонометрического ряда Фурье кусочно гёльдеровой функции (325). 7. Суммируемость тригонометрического ряда Фурье непрерывной функции методом средних арифметических (329). 8. Заключительные замечания (331)
§ 6. Кратные тригонометрические ряды Фурье 332
1. Понятия кратного тригонометрического ряда Фурье и его прямоугольных и сферических частичных сумм (332). 2. Модуль непрерывности и классы Гёльдера для функции N переменных (334). 3. Условия абсолютной сходимости кратного тригонометрического ряда Фурье (335)
ГЛАВА 9. ПРЕОБРАЗОВАНИЕ ФУРЬЕ 33»
§ 1. Представление функции интегралом Фурье 339
1. Вспомогательные утверждения (340). 2. Основная теорема. Формула обращения (342). 3. Примеры (347)
§ 2. Некоторые свойства преобразования Фурье 34&
§ 3. Кратный интеграл Фурье 352

Зорич В. А. Математический анализ. Часть I. – Изд. 4-е, испр. – М.: МЦНМО, 2002. – XVI + 664 с.

Зорич В. А. Математический анализ. Часть II. – Изд. 4-е, испр. – М.: МЦНМО, 2002. – XIV + 794 с.

Университетский учебник в двух томах для студентов физико-математических специальностей. Может быть полезен студентам факультетов и вузов с расширенной математической подготовкой, а также специалистам в области математики и ее приложений.

В книге отражена связь курса классического анализа с современными математическими курсами (алгебры, дифференциальной геометрии, дифференциальных уравнений, комплексного и функционального анализа).

Основные разделы первой части: введение в анализ (логическая символика, множество, функция, вещественное число, предел, непрерывность); дифференциальное и интегральное исчисление функции одной переменной; дифференциальное исчисление функций многих переменных.

Во вторую часть учебника включены следующие разделы: Многомерный интеграл. Дифференциальные формы и их интегрирование. Ряды и интегралы, зависящие от параметра (в том числе ряды и преобразования Фурье, а также асимптотические разложения).

Часть I

  • Глава I. Некоторые общематематические понятия и обозначения
    • § 1. Логическая символика
      • 1. Связки и скобки.
      • 2. Замечания о доказательствах.
      • 3. Некоторые специальные обозначения.
      • 4. Заключительные замечания.
    • § 2. Множество и элементарные операции над множествами
      • 1. Понятие множества.
      • 2. Отношение включения.
      • 3. Простейшие операции над множествами.
    • § 3. Функция
      • 1. Понятие функции (отображения).
      • 2. Простейшая классификация отображений.
      • 3. Композиция функций взаимно обратные отображения.
      • 4. Функция как отношение. График функции.
    • § 4. Некоторые дополнения
      • 1. Мощность множества (кардинальные числа).
      • 2. Об аксиоматике теории множеств.
      • 3. Замечания о структуре математических высказываний и записи их на языке теории множеств.
  • Глава II. Действительные (вещественные) числа
    • § 1. Аксиоматика и некоторые общие свойства множества действительных чисел
      • 1. Определение множества действительных чисел.
      • 2. Некоторые общие алгебраические свойства действительных чисел.
      • 3. Аксиома полноты и существование верхней (нижней) грани числового множества.
    • § 2. Важнейшие классы действительных чисел и вычислительные аспекты операций с действительными числами
      • 1. Натуральные числа и принцип математической индукции.
      • 2. Рациональные и иррациональные числа.
      • 3. Принцип Архимеда.
      • 4. Геометрическая интерпретация множества действительных чисел и вычислительные аспекты операций с действительными числами.
    • § 3. Основные леммы, связанные с полнотой множества действительных чисел
      • 1. Лемма о вложенных отрезках (принцип Коши-Кантора).
      • 2. Лемма о конечном покрытии (принцип Бореля-Лебега.
      • 3. Лемма о предельной точке (принцип Больцано-Вейерштрасса).
    • § 4. Счетные и несчетные множества
      • 1. Счетные множества.
      • 2. Мощность континуума.
  • Глава III. Предел
    • § 1. Предел последовательности
      • 1. Определения и примеры.
      • 2. Свойства предела последовательности.
      • 3. Вопросы существования предела последовательности.
      • 4. Начальные сведения о рядах.
    • § 2. Предел функции
      • 1. Определения и примеры.
      • 2. Свойства предела функции.
      • 3. Общее определение предела функции (предел по базе).
      • 4. Во просы существования предела функции.
  • Глава IV. Непрерывные функции
    • § 1. Основные определения и примеры
      • 1. Непрерывность функции в точке.
      • 2. Точки разрыва.
    • § 2. Свойства непрерывных функций
      • 1. Локальные свойства.
      • 2. Глобальные свойства непрерывных функций.
  • Глава V. Дифференциальное исчисление
    • § 1. Дифференцируемая функция
      • 2. Функция, дифференцируемая в точке.
      • 3. Касательная; геометрический смысл производной и дифференциала.
      • 4. Роль системы координат.
      • 5. Некоторые примеры.
    • § 2. Основные правила дифференцирования
      • 1. Дифференцирование и арифметические операции.
      • 2. Дифференцирование композиции функций.
      • 3. Дифференцирование обратной функции.
      • 4. Таблица производных основных элементарных функций.
      • 5. Дифференцирование простейшей неявно заданной функции.
      • 6. Производные высших порядков.
    • § 3. Основные теоремы дифференциального исчисления
      • 1. Лемма Ферма и теорема Ролля.
      • 2. Теоремы Лагранжа и Коши о конечном приращении.
      • 3. Формула Тейлора.
    • § 4. Исследование функций методами дифференциального исчисления
      • 1. Условия монотонности функции.
      • 2. Условия внутреннего экстремума функции.
      • 3. Условия выпуклости функции.
      • 4. Правило Лопиталя.
      • 5. Построение графика функции.
    • § 5. Комплексные числа и взаимосвязь элементарных функций 2
      • 1. Комплексные числа.
      • 2. Сходимость в С и ряды с комплексными членами.
      • 3. Формула Эйлера и взаимосвязь элементарных функций.
      • 4. Представление функции степенным рядом, аналитичность.
      • 5. Алгебраическая замкнутость поля С комплексных чисел.
    • § 6. Некоторые примеры использования дифференциального исчисления в задачах естествознания
      • 1. Движение тела переменной массы.
      • 2. Барометрическая формула.
      • 3. Радиоактивный распад, цепная реакция и атомный котел.
      • 4. Падение тел в атмосфере.
      • 5. Еще раз о числе е и функции.
      • 6. Колебания.
    • § 7. Первообразная
      • 1. Первообразная и неопределенный интеграл.
      • 2. Основные общие приемы отыскания первообразной.
      • 3. Первообразные рациональных функций.
      • 4. Первообразные вида.
      • 5. Первообразные вида.
  • Глава VI. Интеграл
    • § 1. Определение интеграла и описание множества интегрируемых функций
      • 1. Задача и наводящие соображения.
      • 2. Определение интеграла Римана.
      • 3. Множество интегрируемых функций.
    • § 2. Линейность, аддитивность и монотонность интеграла
      • 1. Интеграл как линейная функция на пространстве.
      • 2. Интеграл как аддитивная функция отрезка интегрирования.
      • 3. Оценка интеграла, монотонность интеграла, теоремы о среднем.
    • § 3. Интеграл и производная
      • 1. Интеграл и первообразная.
      • 2. Формула Ньютона-Лейбница.
      • 3. Интегрирование по частям в определенном интеграле и формула Тейлора.
      • 4. Замена переменной в интеграле.
      • 5. Некоторые примеры.
    • § 4. Некоторые приложения интеграла
      • 1. Аддитивная функция ориентированного промежутка и интеграл.
      • 2. Длина пути.
      • 3. Площадь криволинейной трапеции.
      • 4. Объем тела вращения.
      • 5. Работа и энергия.
    • § 5. Несобственный интеграл
      • 1. Определения, примеры и основные свойства несобственных интегралов.
      • 2. Исследование сходимости несобственного интеграла.
      • 3. Несобственные интегралы с несколькими особенностями.
  • Глава VII. Функции многих переменных, их предел и непрерывность
    • § 1. Пространство R m и важнейшие классы его подмножеств
      • 1. Множество R m и расстояние в нем.
      • 2. Открытые и замкнутые множества в R m .
      • 3. Компакты в R m .
      • Задачи и упражнения.
    • § 2. Предел и непрерывность функции многих переменных
      • 1. Предел функции.
      • 2. Непрерывность функции многих переменных и свойства непрерывных функций.
  • Глава VIII. Дифференциальное исчисление функций многих переменных
    • § 1. Линейная структура в R m
      • 1. R m как векторное пространство.
      • 2. Линейные отображения.
      • 3. Норма в R m .
      • 4. Евклидова структура в R m .
    • § 2. Дифференциал функции многих переменных
      • 1. Дифференцируемость и дифференциал функции в точке.
      • 2. Дифференциал и частные производные вещественнозначной функции.
      • 3. Координатное представление дифференциала отображения. Матрица Якоби.
      • 4. Непрерывность, частные производные и дифференцируемость функции в точке.
    • § 3. Основные законы дифференцирования
      • 1. Линейность операции дифференцирования.
      • 2. Дифференцирование композиции отображений.
      • 3. Дифференцирование обратного отображения.
    • § 4. Основные факты дифференциального исчисления вещественнозначных функций многих переменных
      • 1. Теорема о среднем.
      • 2. Достаточное условие дифференцируемости функции многих переменных.
      • 3. Частные производные высшего порядка.
      • 4. Формула Тейлора.
      • 5. Экстремумы функций многих переменных.
      • 6. Некоторые геометрические образы, связанные с функциями многих переменных.
    • § 5. Теорема о неявной функции
      • 1. Постановка вопроса и наводящие соображения.
      • 2. Простейший вариант теоремы о неявной функции.
      • 3. Переход к случаю зависимости F(x 1 , …, х n , у) = 0.
      • 4. Теорема о неявной функции.
    • § 6. Некоторые следствия теоремы о неявной функции
      • 1. Теорема об обратной функции.
      • 2. Локальное приведение гладкого отображения к каноническому виду.
      • 3. Зависимость функций.
      • 4. Локальное разложение диффеоморфизма в композицию простейших.
      • 5. Лемма Морса.
    • § 7. Поверхность в R n и теория условного экстремума
      • 1. Поверхность размерности к в R n .
      • 2. Касательное пространство.
      • 3. Условный экстремум.
  • Некоторые задачи коллоквиумов
  • Вопросы к экзамену
  • Литература
  • Алфавитный указатель

Часть II

  • Глава IX. Непрерывные отображения (общая теория)
    • § 1. Метрическое пространство
      • 1. Определения и примеры.
      • 2. Открытые и замкнутые подмножества метрического пространства.
      • 3. Подпространство метрического пространства.
      • 4. Прямое произведение метрических пространств.
    • § 2. Топологическое пространство
      • 1. Основные определения.
      • 2. Подпространство топологического пространства.
      • 3. Прямое произведение топологических пространств.
    • § 3. Компакты
      • 1. Определение и общие свойства компакта.
      • 2. Метрические компакты.
    • § 4. Связные топологические пространства
    • § 5. Полные метрические пространства
      • 1. Основные определения и примеры.
      • 2. Пополнение метрического пространства.
    • § 6. Непрерывные отображения топологических пространств
      • 1. Предел отображения.
      • 2. Непрерывные отображения.
    • § 7. Принцип сжимающих отображений
  • Глава Х. Дифференциальное исчисление с более общей точки зрения
    • § 1. Линейное нормированное пространство
      • 1. Некоторые примеры линейных пространств анализа.
      • 2. Норма в векторном пространстве.
      • 3. Скалярное произведение в векторном пространстве.
    • § 2. Линейные и полилинейные операторы
      • 1. Определения и примеры.
      • 2. Норма оператора.
      • 3. Пространство непрерывных операторов.
    • § 3. Дифференциал отображения
      • 1. Отображение, дифференцируемое в точке.
      • 2. Общие законы дифференцирования.
      • 3. Некоторые примеры.
      • 4. Частные производные отображения.
    • § 4. Теорема о конечном приращении и некоторые примеры ее использования
      • 1. Теорема о конечном приращении.
      • 2. Некоторые примеры применения теоремы о конечном приращении.
    • § 5. Производные отображения высших порядков
      • 1. Определение n-го дифференциала.
      • 2. Производная по вектору и вычисление значений n-го дифференциала.
      • 3. Симметричность дифференциалов высшего порядка.
      • 4. Некоторые замечания.
    • § 6. Формула Тейлора и исследование экстремумов
      • 1. Формула Тейлора для отображений.
      • 2. Исследование внутренних экстремумов.
      • 3. Некоторые примеры.
    • § 7. Общая теорема о неявной функции
  • Глава XI. Кратные интегралы
    • § 1. Интеграл Римана на n-мерном промежутке
      • 1. Определение интеграла.
      • 2. Критерий Лебега интегрируемости функции по Рнману.
      • 3. Критерий Дарбу.
    • § 2. Интеграл по множеству
      • 1. Допустимые множества.
      • 2. Интеграл по множеству.
      • 3. Мера (объем) допустимого множества.
    • § 3. Общие свойства интеграла
      • 1. Интеграл как линейный функционал.
      • 2. Аддитивность интеграла.
      • 3. Оценки интеграла.
    • § 4. Сведение кратного интеграла к повторному
      • 1. Теорема Фубини.
      • 2. Некоторые следствия.
    • § 5. Замена переменных в кратном интеграле 139
      • 1. Постановка вопроса и эвристический вывод формулы - замены переменных.
      • 2. Измеримые множества и гладкие отображения.
      • 3. Одномерный случай.
      • 4. Случай простейшего диффеоморфизма в R n .
      • 5. Композиция отображений и формула замены переменных.
      • 6. Аддитивность интеграла и завершение доказательства формулы замены переменных в интеграле.
      • 7. Некоторые следствия и обобщения формулы замены переменных в кратных интегралах.
    • § 6. Несобственные кратные интегралы
      • 1. Основные определения.
      • 2. Мажорантный призивк сходимости несобственного интеграла.
      • 3. Замена переменных в несобственном интеграле.
  • Глава XII. Поверхности и дифференциальные формы в R n
    • § 1. Поверхности в R n
    • § 2. Ориентация поверхности
    • § 3. Край поверхности и его ориентация
      • 1. Поверхность с краем.
      • 2. Согласование ориентации поверхности и края.
    • § 4. Площадь поверхности в евклидовом пространстве
    • § 5. Начальные сведения о дифференциальных формах
      • 1. Дифференциальная форма, определение и примеры.
      • 2. Координатная запись дифференциальной формы.
      • 3. Внешний дифференциал формы.
      • 4. Перенос векторов и форм при отображениях.
      • 5. Формы на поверхностях.
  • Глава XIII. Криволинейные и поверхностные интегралы
    • § 1. Интеграл от дифференциальной формы
      • 1. Исходные задачи, наводящие соображения, примеры.
      • 2. Определение интеграла от формы по ориентированной поверхности.
    • § 2. Форма объема, интегралы первого и второго рода
      • 1. Масса материальной поверхности.
      • 2. Плбщадь поверхности как интеграл от формы.
      • 3. Форма объема.
      • 4. Выражение формы объема в декартовых координатах.
      • 5. Интегралы первого и второго рода.
    • § 3. Основные интегральные формулы анализа
      • 1. Формула Грина.
      • 2. Формула Гаусса-Остроградского.
      • 3. Формула Стокса в R 3 .
      • 4. Общая формула Стокса.
  • Глава XIV. Элементы векторного анализа и теории поля
    • § 1. Дифференциальные Ъперации векторного анализа
      • 1. Скалярные и векторные поля
      • 2. Векторные поля и формы в R 3 .
      • 3. Дифференциальные операторы grad, rot, div и V.
      • 4. Некоторые дифференциальные формулы векторного анализа.
      • 5. Векторные операции в криволинейных координатах.
    • § 2. Интегральные формулы теории поля
      • 1. Классические интегральные формулы в векторных обозначениях.
      • 2. Физическая интерпретация.
      • 3. Некоторые дальнейшие интегральные формулы.
    • § 3. Потенциальные поля
      • 1. Потенциал векторного поля.
      • 2. Необходимое условие потенциальности.
      • 3. Критерий потенциальности векторного поля.
      • 4. Топологическая структура области и потенциал.
      • 5. Векторный потенциал. Точные и замкнутые формы.
    • § 4. Примеры приложений
      • 1. Уравнение теплопроводности.
      • 2. Уравнение неразрыв ности.
      • 3. Основные уравнения динамики сплошной среды.
      • 4. Волновое уравнение.
  • Глава XV. Интегрирование дифференциальных форм на многообразиях 305
    • § 1. Некоторые напоминания из линейной алгебры
      • 1. Алгебра форм.
      • 2. Алгебра кососимметрических форм.
      • 3. Линейные отображения линейных пространств, и сопряженные отображения сопряженных пространств. Задачи и упражнения
    • § 2. Многообразие.
      • 1. Определение многообразия.
      • 2. Гладкие многообразия и гладкие отображения.
      • 3. Ориентация, многообразия и, его края.
      • 4. Разбиение единицы и реализация многообразий в виде поверхностей в R n .
    • § 3. Дифференциальные формы и их интегрирование на многообразиях
      • 1. Касательное пространство к многообразию в точке.
      • 2. Дифференциальная форма на многообразии.
      • 3. Внешний дифференциал.
      • 4. Интеграл от формы по многообразию.
      • 5. Формула Стокса.
    • § 4. Замкнутые и точные формы на многообразии
      • 1. Теорема Пуанкаре.
      • 2. Гомологии и когомологви.
  • Глава XVI. Равномерная сходимость и основные операции анализа над рядами и семействами функций
    • § 1. Поточечная и равномерная сходимость
      • 1. Поточечная сходимость.
      • 2. Постановка основных вопросов.
      • 3. Сходимость и равномерная сходимость семейства функций, зависящвх от параметра.
      • 4. Критерий Коши равномерной сходимости.
    • § 2. Равномерная сходимость рядов функций
      • 1. Основные определения и критерий равномерной сходимости ряда.
      • 2. Признак Вейергатрасса равномерной сходимости ряда.
      • 3. Признак Абеля-Дирихле.
    • § 3. Функциональные свойства предельной функции
      • 1. Конкретизация задачи.
      • 2. Условия коммутнрованвя двух предельных переходов.
      • 3. Непрерывность и предельный переход.
      • 4. Интегрирование и предельный переход.
      • 5. Дифференцирование и предельный переход.
    • § 4. Компактные и плотные подмножества пространства непрерывных функций
      • 1. Теорема Арцела-Асколи.
      • 2. Метрическое пространство.
      • 3. Теорема Стоуна.
  • Глава XVII. Интегралы, зависящие от параметра
    • § 1. Собственные интегралы, зависящие от параметра
      • 1. Понятие интеграла, зависящего от параметра.
      • 2. Непрерывность интеграла, зависящего от параметра.
      • 3. Дифференцирование интеграла, зависящего от параметра.
      • 4. Интегрирование интеграла, зависящего от параметра
    • § 2. Несобственные интегралы, зависящие от параметра
      • 1. Равномерная сходимость несобственного интеграла относительно параметра.
      • 2. Предельный переход под знаком несобственного интеграла и непрерывность несобственного интеграла, зависящего от параметра.
      • 3. Дифференцирование несобственного интеграла по параметру.
      • 4. Интегрирование несобственного интеграла по параметру.
    • § 3. Эйлеровы интегралы
      • 1. Бета-функция.
      • 2. Гамма-функция.
      • 3. Связь между функциями В и Г.
      • 4. Некоторые примеры.
    • § 4. Свертка функций и начальные сведения об обобщенных функциях
      • 1. Свертка в физических задачах (наводящие соображения).
      • 2. Некоторые общие свойства свертки.
      • 3. Дельтаобразные семейства функций и аппроксимациониая теорема Вейерштрасса.
      • 4. Начальные представления о распределениях.
    • § 5. Кратные интегралы, зависящие от параметра
      • 1. Собственные кратные интегралы, зависящие от параметра.
      • 2. Несобственные кратные интегралы, зависящие от параметра.
      • 3. Несобственные интегралы с переменной особенностью.
      • 4. Свертка, фундаментальное решение и обобщенные функции в многомерном случае.
  • Глава XVIII Рид Фурье и преобразование Фурье
    • § 1. Основные общие представления, связанные с понятием ряда Фурье
      • 1. Ортогональные системы функций.
      • 2. Коэффициенты Фурье и ряд Фурье.
      • 3. Об одном важном источнике ортогональных систем функций в анализе.
    • § 2. Тригонометрический ряд Фурье
      • 1. Основные виды сходимости классического ряда Фурье.
      • 2. Исследование поточечной схвдимости тригонометрического ряда Фурье.
      • 3. Гладкость функции и скорость убывания коэффициентов Фурье.
      • 4. Полнота тригонометрической системы.
    • § 3. Преобразование Фурье
      • 1. Представление функции интегралом Фурье.
      • 2. Регулярность функции и скорость убывания ее преобразования Фурье.
      • 3. Важнейшие аппаратные свойства преобразования Фурье.
      • 4. Примеры приложений.
  • Глава XIX. Асимптотические разложения
    • § 1. Асимптотическая формула и асимптотический ряд
      • 1. Основные определения.
      • 2. Общие сведения об асимптотических рядах.
      • 3. Степенные асимптотические ряды.
    • § 2. Асимптотика интегралов (метод Лапласа)
      • 1. Идея метода Лапласа.
      • 2. Принцип локализации дли интеграла Лапласа.
      • 3. Канонические интегралы и их асимптотика.
      • 4. Главный член асимптотики интеграла Лапласа.
      • 5. Асимптотические разложения интегралов Лапласа.
  • Задачи и упражнения
  • Литература
  • Указатель основных обозначений
  • Алфавитный указатель
Поделиться: