Что значит пена средней кратности. Пенообразователь и пожарная пена: характеристики и свойства

Определить расчетные расходы пенообразователя и воды, тип и количест­во пеногенераторов при тушении пожара пеной средней кратности в резервуаре в зависимости от их конструкции, а также пеной низкой кратности, подаваемой в слой нефтепродукта .

Исходные данные:

Резервуар вместимостью 10000 м 3 со стационарной крышей (СК) или ре­зервуар с понтоном (СП), или резервуар с плавающей крышей (ПК);

Хранимый нефтепродукт - нефть с температурой вспышки менее 28 °С;

Жесткость воды для приготовления раствора пенообразователя до 10 мг·экв/л;

Марка пенообразователя для тушения пеной средней кратности - ПО-1Д, для тушения пеной низкой кратности подаваемой в слой продукта - ФОРЕТОЛ.

Пена средней кратности

По табл. 4.1., в зависимости от марки пенообразователя (ПО - 1Д), опреде­ляем нормативную интенсивность подачи раствора - 0,08 л/(с·м 2). В зависимо­сти от жесткости воды (до 10 мг·экв/л) определяем рабочую концентрацию пе­нообразователя в растворе - 6%.

Для наземных резервуаров СК и СП по табл. 4.2. определяем:

Тип пеногенераторов - ГПСС - 2000;

Для наземного резервуара с ПК по табл. 4.3. определяем:

Расчетный расход раствора пенообразователя - 24 л/с;

Тип пеногенераторов - ГПС - 600;

Количество пеногенераторов - 4 шт.

Пена низкой кратности

По таблице 4.4. определяем нормативную интенсивность подачи раствора - 0,08 л/(с·м 2).

В зависимости от жесткости воды (до 10 мг·экв/л) определяем рабочую концентрацию пенообразователя в растворе - 5%.

Для наземных резервуаров по таблице 17. определяем:

Расчетный расход раствора пенообразователя - 60 л/с;

Тип пеногенераторов - ВПГ - 20;

Количество пеногенераторов - 3 шт.

Таблица 4.1

Определение рабочей концентрации пенообразователя в растворе

Вид нефтежидкости Нормативная интенсивность подачи раствора в зависимости от вида ПО,л/c·м 2 Рабочая концентрация ПО в зависимости от вида воды
ПО общего назначения ПО специального назначения
ПО-1 ПО-6 ПО-1Д ПО -ЗАИ ТАЭС САМПО Фторсинтетические ПО: форетол универсальный подслойный
при подаче на пов-ть неф-та при подаче в слой неф-та
Жесткость воды, (мг·экв)/л
до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30 до cв 10 до 30 св 30
Пена средней кратности Пена низ-й кр-ти
Нефть и др. неф-ты с температурой вс­пышки менее 28°С 0,08 0,08 0,08 0,065 0,04 0,08
- - -
Бензины 0,08 0,06 0,06 0,06 0,04 0„08
- - -
Нефть и др. неф-ты с температурой вспышки более 28°С 0,05 0,05 0,05 0,04 - 0,06
- - - - -
Нефть в смеси с газовым конденса­том до 5 0,12 0,12 0,12 0,09 0,04 0,1
- - -

Таблица 4.2

Определение расчетного расхода раствора пенообразователя и количества ГПС (ГПСС) для тушения резервуаров

Защищаемая площадь, м 2 Номинальный объем наземного резервуара СК и СП, м 3 Расчетный расход раствора ПО, л/(с·м 2). Количество ГПС (ГПСС), шт.
Интенсивность подачи раствора ПО, л/(с·м 2).
0,04 0,05 0,06 0,065 0,08 0,09 0,1 0,12
До 50 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) ---
50 – 100 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) ---
100 – 150 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 12 (2) --- 18 (3) --- 18 (3) --- 18 (3) ---
150 – 200 12 (2) --- 12 (2) --- 12 (2) --- 18 (3) --- 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2)
200 – 250 12 (2) --- 18 (3) --- 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2)
250 – 300 12 (2) --- 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2)
300 – 350 18 (3) --- 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 36 (6) 40 (2) 42 (7) 60 (3)
350 – 400 18 (3) --- 24 (4) 40 (2) 24 (4) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 36 (6) 40 (2) 42 (7) 40 (2) 48 (8) 60 (3)
400 – 450 18 (3) --- 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 42 (7) 60 (3) 48 (8) 60 (3) 54 (9) 60 (3)
450 – 500 24 (4) 40 (2) 30 (5) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 42 (7) 40 (2) 48 (8) 60 (3) 54 (9) 60 (3) 60 (10) 60 (3)
500 – 600 24 (4) 40 (2) 30 (5) 40 (2) 36 (6) 40 (2) 42 (7) 40 (2) 48 (8) 60 (3) 54 (9) 60 (3) 60 (10) 60 (3) --- 80 (4)
600 – 700 30 (5) 40 (2) 36 (6) 40 (2) 48 (8) 60 (3) 48 (8) 60 (3) 60 (10) 60 (3) --- 80 (4) --- 80 (4) --- 100 (5)
700 – 1000 42 (7) 40 (2) 48 (8) 60 (3) 60 (10) 60 (3) --- 80 (4) --- 80 (4) --- 100 (5) --- 100 (5) --- 120 (6)
1000 – 1300 54 (9) 60 (3) --- 80 (4) --- 80 (4) --- 100 (5) --- 120 (6) --- 120 (6) --- 140 (7) --- 160 (8)
1300 – 1600 --- 80 (4) --- 80 (4) --- 100 (5) --- 120 (6) --- 140 (7) --- 160 (8) --- 160 (8) --- 200(10)
1600 – 2000 --- 80 (4) --- 100 (5) --- 120 (6) --- 140 (7) --- 160 (8) --- 180 (9) --- 200(10) --- 240(12)
2000 – 2500 --- 100 (5) --- 140 (7) --- 160 (8) --- 180 (9) --- 200(10) --- 240(12) --- 260(13) --- 300(15)
2500 – 3000 --- 120 (6) --- 160 (8) --- 180 (9) --- 200(10) --- 240(12) --- 280(14) --- 300(15) --- 360(18)

Примечания: 1. В скобках приводятся расчетные данные по количеству ГПС для тушения резервуаров.

2. В числителе дроби приводятся данные для ГПС - 600, в знаменателе для ГПС - 2000

Таблица 4.3

Определение расчетного расхода раствора пенообразователя и количества ГПС для тушения резервуаров с плавающей крышей

Номинальный объем резервуара ПК,м 3 Периметр ре­зервуара ПК,м 3 Расчетный расход раствора ПО, л/с Количество ГПС, шт
2 (4)
2 (12)
2 (4)
2 (12)
3 (6)
3 (18)
3 (6)
3 (18)
4 (8)
4 (24)
-
5 (30)
-
6 (36)
-
8 (48)
-
8 (48)
-
11 (66)

Примечания:

1. В скобках приводятся расчетные данные по расходу раствора понеообразователя для тушения резервуаров с плавающей крышей.

2. В числителе дроби приводятся данные для ГПС - 200, в знаменателе для ГПС -600.

3. Количество ГПС, приведенных в таблице, является минимальным" не зависимо от площади тушения пожара.

Таблица 4.4

Определение расчетного расхода фторсинтетического пенообразователя и ко­личества пеногенераторов типа ВПГ при подаче низкократной пены в слой

нефтепродукта

Защищаемая площадь ре­зервуара, м 2 Номинальный объем резер­вуара СК и СП, м 3 Расчетный расход раствора ПО, л/(с·м) Количество ВПГ, шт
Интенсивность подачи раствора, л/(с·м)
0,06 0,08 0,1
До 50 20 (2) --- 20 (2) --- 20 (2) ---
50 – 100 20 (2) --- 20 (2) --- 20 (2) ---
20 (2) --- 20 (2) --- 20 (2) ---
20 (2) --- 30 (3) 40 (2) 30 (3) 40 (2)
30 (3) 40 (2) 30 (3) 40 (2) 40 (4) 40 (2)
41 (4) 40 (2) 60 (6) 60 (3) 70 (7) 80 (4)
80 (8) 80 (4) 110 (11) 120 (6) 130 (13) 140 (7)
100 (10) 100 (5) 140 (14) 140 (7) 170 (17) 180 (9)
160 (16) 160 (8) 210 (21) 220 (11) 260 (26) 260 (13)
180 (18) 180 (9) 240 (24) 240 (12) 290 (29) 300 (15)

Примечание:

1 .В скобках приводятся расчетные данные по количеству ВПГ для тушения резервуа­ров.

2.В числителе и знаменателе дроби приводятся данные соответственно для ВПГ - 10 и ВПГ - 20.

Пена – это скопление пузырьков, которое способствует , главным образом, за счет эффекта поверхностного тушения. Пузырьки возникают при смешивании воды с пенообразователем. Пена легче самого легкого воспламеняющегося нефтепродукта, поэтому при подаче на горящий нефтепродукт она остается на его поверхности.

Дополнительно читаете еще один


Виды пены по кратности:

  • пены низкой кратности – кратность пены от 4 до 20 (получают стволами СВП, пеносливными устройствами);
  • пены средней кратности – кратность пены от 21 до 200 (получают генераторами ГПС);
  • пены высокой кратности – кратность пены более 200 (получают путем принудительного нагнетания воздуха).

Область применения. Достоинства и недостатки

Пена широко применяется для тушения пожаров твердых (пожары класса А) жидких веществ (пожары класса В), не вступающих во взаимодействие с водой, и в первую очередь – для тушения пожаров нефтепродуктов.

Химическая пена о бразуется смешиванием щелочи (обычно бикарбоната натрия) с кислотой (как правило, сульфата алюминия) в воде. Эти вещества содержатся в одном герметичном контейнере. Чтобы сделать пену более прочной и продлить срок ее службы, к ней добавляется стабилизатор.

При взаимодействии указанных химических веществ образуются пузырьки, наполненные углекислым газом, который в данном случае практически не обладает никакой огнетушащей способностью; его назначение – заставить пузырьки всплывать.

Порошок может храниться в емкостях и вводиться в воду в процессе борьбы с пожаром через специальную воронку или каждое из двух химических веществ может быть предварительно перемешано с водой, в результате чего образуется раствор сульфата алюминия и раствор бикарбоната натрия.

Эта пена образуется из пенного раствора, получаемого при смешивании пенообразователя с водой. Пузырьки возникают при турбулентном перемешивании воздуха с пенным раствором. Как следует из самого названия пены, ее пузырьки заполнены воздухом. Качество пены зависит от степени перемешивания, а также от исполнения и эффективности используемого оборудования, а ее количество – от конструкции этого оборудования.

Существует несколько типов воздушно-механической пены, одинаковых по природе, но имеющих разную огнетушащую эффективность. Ее пенообразователи производят на основе протеина и поверхностно-активных веществ. Поверхностно-активные вещества – это большая группа веществ, включающая моющие средства, смачиватели и жидкое мыло.

Ограничения в применении пены

При правильном использовании пена – эффективное огнетушащее вещество. Тем не менее существуют определенные ограничения в ее применении, которые перечислены далее.

  1. Поскольку пена представляет собой водный раствор, она проводит электричество, поэтому ее нельзя подавать на электрооборудование, находящееся под напряжением.
  2. Пену, так же как и воду, нельзя применять для тушения горючих металлов.
  3. Многие типы пены нельзя употреблять с огнетушащими порошками. Исключение из этого правила составляет «легкая вода», которая может использоваться с огнетушащим порошком
  4. Пена не годится для тушения пожаров, связанных с горением газов и криогенных жидкостей. Но высоко-кратная пена применяется при тушении растекающихся криогенных жидкостей для быстрого подогрева паров и уменьшения опасности, сопутствующих такому растеканию

  1. Несмотря на существующие ограничения в применении, пена очень эффективна при борьбе .
  2. Пена - очень эффективное огнетушащее вещество, которое, кроме того, обладает и охлаждающим эффектом.
  3. Пена создает паровой барьер, препятствующий выходу воспла­меняющихся паров наружу. Поверхность цистерны может быть покрыта пеной для защиты ее от пожара в соседней цистерне.

4. Пена может быть использована для тушения пожаров класса А в связи с наличием в ней воды. Особенно эффективна «легкая вода».

5. Пена – эффективное огнетушащее вещество для покрытия расте­кающихся нефтепродуктов. Если нефтепродукт вытекает, нужно попытаться закрыть клапан и таким образом прервать поток. Если это невозможно сделать, надо преградить путь потоку при помощи пены, которую следует подавать в район пожара для его тушения и затем для создания защитного слоя, покрывающего просачивающуюся жидкость.

6. Пена – наиболее эффективное огнетушащее вещество для тушения пожаров в больших емкостях с .

7. Для получения пены может использоваться пресная или жесткая или мягкая вода.

Отдельного внимания заслуживает и компрессионная пена, которая очень хорошо себя зарекомендовала при тушении пожаров.

Компрессионная пена (compressed air foam system, CAFS) – технология, используемая в пожаротушении для доставки огнетушащей пены с целью тушения возгорания или защиты зоны, где отсутствует горение, от воспламенения.

Компрессионная пена получается из стандартной насосной установки, которая имеет точку ввода сжатого воздуха в пенообразователь для формирования пены. Кроме того, сжатый воздух также добавляет энергию в струю, которая позволяет увеличить дальность доставки ОТВ по сравнению со стандартными пеногенераторами или стволами.

При использовании компрессионной пены, эффективность огнетушащего вещества составляет порядка 80%. Такой показатель возможен благодаря особым физическим свойствам компрессионной пены, а именно адгезивности. При тушении пожара, ствольщик получает в свой арсенал новые возможности. При нанесении на потолок и стены, пена изолирует смежные помещения от воздействия высоких температур, при этом пена долго держится даже на вертикальных поверхностях: от одного часа на металлической до двух-трех часов на деревянной. Каждый пузырь компрессионной пены имеет стойкую связь с соседними, что обуславливает высокую стойкость пены. В результате получается тонкое (около 1-2 сантиметров) и прочное «одеяло», которое буквально «укрывает» горящую поверхность, прекращая доступ кислорода в очаг возгорания.

Готовая компрессионная пена подаётся по напорным пожарным рукавам диаметром 38 или 51 мм под рабочим давлением 7 ÷ 10 кгс/см 2 .

Физические параметры компрессионной пены и, соответственно, огнетушащие свойства пены – изменяются посредством изменения соотношения ингредиентов. Может вырабатываться «сырая» (тяжёлая) пена с соотношением от 1: 5 (вода: воздух) и «сухая» (лёгкая) пена с соотношением до 1: 20 (вода: воздух).

Подача компрессионной пены с соотношением 1: 10 (вода: воздух) на вертикальные поверхности

(металлическую дверь, кирпичную стену).

Вместе с тем, пена обладает и лучшими свойствами воды – она охлаждает очаг, а благодаря смачивателям, включенным в ее состав – проникает в поры и трещины поверхности, предотвращая тление материала и его повторное возгорание.

Главные преимущества компрессионной пены: быстрый сбив пламени и снижение температуры, сокращение времени тушения в 5 ÷ 7 раз (на 500 ÷ 700 % !!!), снижение расхода воды в 5 ÷ 15 раз (на 500 ÷ 1500 %).

Пенобразователи

Пенообразователь (пенный концентрат) -концентрированный водный раствор стабилизатора пены (поверхностно-активного вещества), образующий при смешивании с водой рабочий раствор пенообразователя.

Пенообразователи предназначены для получения с помощью пожарной техники воздушно-механической пены или растворов смачивателей, используемых для тушения пожаров классов А (горение твердых веществ) и В (горение жидких веществ).

Пенообразователи в зависимости от химического состава (поверхностно-активной основы) подразделяются на:

  • синтетические (с),
  • фторсинтетические (фс ),
  • протеиновые (п),
  • фторпротеиновые (фп ).

Пенообразователи в зависимости от способности образовывать огнетушащую пену на стандартном пожарном оборудовании подразделяются на:

Самыми популярными и недорогими, и в то же время эффективными, на сегодняшний день считаются пенообразователи с маркировкой ПО-6 и ПО-3. Цифры на маркировке говорят об уровне концентрации пенообразователя в рабочем растворе (6 или 3 литра на определенный объем воды). Хранить такую продукцию следует в отапливаемых помещениях. Замерзая, пенообразователь не теряет своих свойств и вновь готов к эксплуатации после размораживания, но в условиях возникшего пожара времени на приведение его в нужную консистенцию может просто не быть. Оба вида относятся к числу биоразлагаемых и абсолютно безопасны при хранении и транспортировке.

ХАРАКТЕРИСТИКА НАИБОЛЕЕ РАСПРОСТРАНЁННЫХ ПЕНООБРАЗОВАТЕЛЕЙ

ПО-6НП – синтетический, биологически разлагаем. Предназначен для тушения пожаров нефтепродуктов, ГЖ, для применения с морской водой. «Морпен» – синтетический, биологически разлагаем. Предназначен для получения огнетушащей пены низкой, средней и высокой кратности с использованием как пресной, так и морской воды.

ПО-1 Водный раствор нейтрализованного керосинового кон­такта 84±3%, костный клей для стойкости пены 5 ± 1 % синтетический этиловый спирт или концентрированный этиленгликоль 11 ± 1 %. Температура замерзания не пре­вышает -8 °С. Является основным пенообразующим средством для получения воздушно-механической пены любой кратности.

При тушении нефтей и нефтепродуктов концентрация водного раствора ПО-1 принимается 6%. При тушении других веществ и материалов используют растворы с концентрацией 2 – 6 %.

ПО-3А Водный раствор смеси натриевых солей вторичных ал­килсульфатов. Содержит 26±1 % активного вещества. Температура замерзания не выше – 3°С. При примене­нии разбавляют водой в пропорции 1: 1 с использо­ванием дозирующей аппаратуры, рассчитанной на пено­образователь ПО-1. Для получения пены применяют водный раствор с концентрацией 4 – 6 %.
ПО-6К Изготовляют из кислого гудрона при сульфировании гидроочищенного керосина. Содержит 32 % активного вещества. Температура замерзания не выше -3°С. Для получения пены при тушении нефтепродуктов используют водный раствор с концентрацией 6 %. В других случаях концентрация водного раствора может быть меньше.
«Сампо» Состоит из синтетического поверхностно-активного вещества (20%), стабилизатора (15%), антифризной добавки (10%) и вещества, снижающего коррозионное действие состава (0,1 %). Температура застывания – 10°С. Для получения пены используют водный раствор с концентрацией 6 %. Применяют при тушении нефти, неполярных нефтепродуктов, резинотехнических изделий древесины, волокнистых материалов, в стационарны системах пожаротушения и для защиты технологических установок.
  • 5.2 Основные геометрические и физико-химические параметры пожара и формулы для их определения
  • 5.3. Физико-химические свойства некоторых веществ и материалов
  • 5.4. Линейная скорость распространения горения
  • 5.5. Воздействие офп на человека и их допустимые значения
  • 6. Прекращение (ликвидация) горения.
  • 6.1. Условия прекращения горения
  • 6.2. Способы прекращения горения
  • 6.3. Огнетушащие средства – виды, классификация.
  • 6.4. Огнетушащие вещества и материалы
  • 7. Параметры тушения пожара
  • 7.1. Интенсивность подачи огнетушащих средств
  • 7.2. Расходы огнетушащих средств на пожаротушение
  • 7.2.1. Расход огнетушащего средства
  • 7.2.2. Расход воды из пожарных стволов
  • 7.2.3. Нормативные расходы воды, установленные «Техническим регламентом о требованиях пожарной безопасности»
  • 7.3. Время (периоды) тушения пожара
  • 7.4. Площадь тушения (тушение по площади)
  • 7.5. Тушение по объёму (объёмное тушение)
  • 9. Тактико-технические данные пожарной техники.
  • 9.1. Классификация пожарной техники и главные параметры пожарных автомобилей.
  • Структурная схема обозначений пожарных автомобилей:
  • 9.2. Тактико-техническая характеристика пожарных насосов
  • 9.3. Основные пожарные автомобили
  • 9.4. Тактико-технические характеристики основных пожарных автомобилей общего применения
  • 9.4.1. Пожарные автоцистерны.
  • 9.4.2. Пожарные автоцистерны с лестницей (ацл), пожарные автоцистерны с коленчатым подъемником, пожарно-спасательные автомобили.
  • 9.4.3. Пожарных автомобилей первой помощи (апп)
  • 9.4.4. Пожарные насосно-рукавные автомобили.
  • 9.5. Тактико-технические характеристики основных пожарных автомобилей целевого применения
  • 9.5.1. Пожарные автомобили порошкового тушения (ап).
  • 9.5.2. Пожарные автомобили пенного тушения.
  • 9.5.3. Пожарные автомобили комбинированного тушения.
  • 9.5.4. Пожарные автомобили газового тушения.
  • 9.5.5. Пожарные автомобили газоводяного тушения.
  • 9.5.6. Пожарные автонасосные станции.
  • 9.5.7. Пожарные пеноподъёмники.
  • 9.5.8. Пожарные аэродромные автомобили.
  • 9.6. Тактико-технические характеристики специальных пожарных автомобилей
  • 9.6.1. Пожарные автолестницы
  • 9.6.2. Пожарные коленчатые автоподъёмники
  • 9.6.3. Пожарный аварийно – спасательный автомобиль
  • 9.6.4. Пожарные автомобили газодымозащитной службы
  • 9.6.5. Пожарные автомобили связи и освещения
  • 9.6.6. Пожарные рукавные автомобили
  • 9.6.7. Пожарный водозащитный автомобиль
  • 9.6.8. Пожарный автомобиль дымоудаления
  • 9.6.9. Пожарный штабной автомобиль
  • 9.6.10. Автомобиль отогрева пожарной техники
  • 9.6.11. Пожарная компрессорная станция
  • 9.6.12. Другие типы специальных пожарный автомобилей
  • 9.7. Переносные и прицепные пожарные мотопомпы
  • 9.8. Сизод и воздушные компрессоры
  • 9.8.1. Аппараты дыхательные со сжатым воздухом
  • 9.8.2. Аппараты дыхательные со сжатым кислородом
  • 9.8.3. Компрессорные установки
  • 9.9. Стволы (водяные, пенные, лафетные, генераторы)
  • 9.9.1. Стволы ручные
  • 9.9.2. Стволы лафетные
  • 9.9.3. Стволы лафетные с дистанционным управлением и роботизированные
  • Технические характеристики пожарных роботов на базе лафетных стволов
  • Технические характеристики пожарных роботов на базе лафетных стволов
  • 9.10. Рукава (напорные, всасывающие)
  • 9.11. Ручные пожарные лестницы.
  • 9.12. Средства связи
  • 9.13. Специальная защитная одежда
  • 9.14. Высокотехнологичные средства тушения и робототехнические комплексы
  • Мобильный робототехнический комплекс разведки и пожаротушения
  • 10. Основы расчёта сил и средств для тушения пожаров.
  • 10.1. Проведение расчета сил и средств для тушения пожара
  • 10.2. Расчёты по забору и подаче воды из противопожарных резервуаров и водоёмов
  • 10.2.1. Расчёт гидроэлеваторных систем.
  • 10.3. Определение напоров на насосе при подаче воды и раствора пенообразователя на тушение
  • 10.4. Проведение расчётов по подаче воды к месту пожара
  • 10.4.1. Подача воды в перекачку
  • 10.4.2. Подвоз воды автоцистернами
  • 10.5. Особенности тушения пожаров на различных объектах
  • 10.5.1. Подача воды на тушение в зданияхповышенной этажности
  • 10.5.2. Тушение в зданияхповышенной этажности с использованием универсальных стволов.
  • 10.5.3.Тушение пожаров нефти и нефтепродуктов в резервуарах
  • 10.5.3.Тушение пожаров на открытых технологических установках
  • 11. Этапы боевого развёртывания.
  • 12. Нормативы по пожарно-строевой подготовке (извлечения).
  • 13. Сигналы управления
  • 7.5. Тушение по объёму (объёмное тушение)

    Для объемного тушения пожаров подразделениями пожарной охраны используются, как правило, генераторы пены средней кратности. Требуемое число генераторов в объёме помещения рассчитывается:

    – число генераторов, шт;

    V п – объем помещения, заполняемый пеной, м 3 ;

    K з – коэффициент, учитывающий разрушение и потерю пены;

    – расход пены из пеногенератора, м 3 мин -1 ;

    – расчетное время тушения пожара, мин.

    Требуемое количество пенообразователя на тушение пожара определяется по формуле.

    (50)

    где
    общий расход пенообразователя, л;

    – расход определяемого огнетушащего вещества, пенообразователя,

    Объем, который можно заполнить одним генератором пены средней кратности, вычисляют по формуле:

    =
    τ р /К з; (51)

    – возможный объем тушения пожара одним генератором ГПС, м 3 ;

    – подача (расход) генератора по пене, м 3 /мин (см. табл. 133);

    τ р – расчетное время тушения пожара, мин (при тушении пеной средней кратности принимается 10...15 мин);

    К з – коэффициент, учитывающий разрушение и потерю пены (обычно принимается равным 3, а при расчете стационарных систем – 3,5).

    Необходимое количество генераторов при известном объеме заполнения пеной одним генератором определяют по формулам:

    =/
    (52)

    – число генераторов ГПС-600, шт.;

    –объем помещения, заполняемый пеной, м 3 .

    Таблица 66

    Требуемое число генераторов ГПС для объемного тушения пожаров

    Требуется на тушение

    Объем, заполняемый пеной, м 3

    Требуется на тушение

    пенообразователя, л

    пенообразователя, л

    В практических расчетах по определению требуемого числа генераторов для объемного тушения пеной можно пользоваться табл. 66 или помнить, что один ГПС-600 обеспечивает тушение 120 м 3 , ГПС-2000 –400 м 3 , ПГУ на базе ПД-7 –300 м 3 , а ПГУ на базе ПД-30 – 700 м 3 . За 10 мин тушения пожара один ГПС-600 расходует 210 л пенообразователя, а ГПС-2000 – 720 л.

    8. Гидравлические характеристики водопроводной сети и напорных пожарных рукавов

    Таблица 67

    Водоотдача водопроводных сетей

    Напор в сети, м

    Вид водопроводной сети

    Водоотдача водопроводной сети, л/с, при диаметре трубы, мм

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Тупиковая

    Кольцевая

    Скорость движения воды по трубам зависит от их диаметра, а также от напора, и может быть определена по таблице 68. Водоотдача тупиковых водопроводных сетей примерно на 0,5 меньше кольцевых.

    Таблица 68

    Скорость движения воды по трубам

    Напор в сети, м

    Скорость движения воды, м/с, при диаметре трубы, мм

    В период эксплуатации водопроводных сетей диаметр труб уменьшается за счет коррозии и отложений на их стенках, поэтому для выявления фактических расходов воды из трубопроводов их испытывают на водоотдачу. Существует два способа испытания водопроводов на водоотдачу. В первом случае на пожарные гидранты устанавливают пожарные автомобили и через стволы при рабочем напоре определяют максимальный расход воды, или на гидранты устанавливают пожарные колонки, открывают шиберы, а затем аналитически определяют расход при существующем напоре в водопроводе. Для определения водоотдачи сети в наихудших условиях испытания проводят в период максимального водопотребления.

    Испытание водопроводных сетей вторым способом производят путем оборудования пожарной колонки двумя отрезками труб длиной 500 мм, диаметром 66 или 77 мм (2,5 или 3”) с соединительными головками и на корпусе колонки устанавливают манометр. Полный расход из колонки слагается по сумме расходов через два патрубка, а водоотдача сети определяется по суммарному расходу воды из нескольких колонок, установленных на пожарные гидранты испытуемого участка водопровода.

    При небольшой водоотдаче водопроводных сетей можно пользоваться одним патрубком колонки, а к другому присоединить заглушку с манометром.

    Расход воды через пожарную колонку определяют по формуле

    , (53)

    – расход воды через колонку, л/с;

    Н – напор воды в сети (показание манометра), м;

    Р – проводимость колонки (см. табл. 69).

    Таблица 69

    Число открытых патрубков колонки

    Среднее значение проводимости

    Один патрубок диаметром 66 мм

    Один патрубок диаметром 77 мм

    Два патрубка диаметром 66 мм

    Таблица 70

    Расход воды через один патрубок пожарной колонки

    в зависимости от напора у гидранта

    Расход воды через один патрубок колонки указан в таблице 70. На участках водопроводных сетей с малыми диаметрами (100... 25 мм) и незначительным напором (10...15 м) забор воды осуществляют насосом из колодца с помощью всасывающей линии, заполняя его водой из гидранта на излив. В этих случаях расход воды из гидранта несколько больше расхода воды, забираемого насосом через колонку.

    Таблица 71

    Объем одного рукава длиной 20 м в зависимости от его диаметра:

    Таблица 72

    Сопротивление одного напорного рукава длиной 20 м

    Диаметр рукава, мм

    Прорезиненные

    Непрорезиненные

    Таблица 73

    Потери напора в одном пожарном рукаве магистральной линии длиной 20 м

    Диаметр рукава, мм

    Количество и тип стволов

    Потери напора в рукаве, м

    Количество и

    тип стволов

    Потери напора в рукаве, м

    Прорезиненном

    Непрорезиненном

    Прорезиненном

    Непрорезиненном

    Один ствол Б

    Один ствол Б

    Один ствол А

    Два ствола Б

    Два ствола Б

    Три ствола Б

    Три ствола Б

    Один ствол А

    и один ствол Б

    Один ствол А

    и один ствол Б

    Два ствола Б

    и один ствол А

    Два ствола Б

    и один ствол А

    Примечание. Показатели таблицы даны при напоре у ствола 40 м и расходе воды из ствола А с диаметром насадка 19 мм – 7,4 л/с, а с диаметром насадка 13 мм – 3,7 л/с.

    Таблица 74

    Потери напора в одном рукаве при полной пропускной способности воды

    Таблица 75

    Потери напора в пожарных рукавах на 100 м длины (100 i, м)

    Расход воды, л/с

    прорезиненные диаметром, мм

    непрорезиненные диаметром, мм

    Воздушно-механическая пена, полученная из современных пеноконцентратов, является эффективным огнетушащим веществом. Пенный слой, сформированный на поверхности горящего вещества, одновременно обеспечивает его изоляцию от поступления новых порций кислорода, выступающего в качестве окислителя, и производит охлаждающий эффект за счёт большой теплоёмкости воды, входящей в .

    Процесс пенообразования происходит на специальных пеногенерирующих устройствах, при подаче на них под давлением рабочего раствора пенообразователя, полученного из пеноконцентратов с различными объёмными долями применения, при смешении его с воздухом.

    Пены, применяемые для целей пожаротушения, должны обладать высокой структурно-механической стойкостью к неблагоприятному воздействию на них разнообразных внешних факторов, присутствующих в зоне пожара.

    Пены различной кратности позволяют решать задачи пожаротушения объектов различной природы происхождения путём выбора наиболее оптимального огнетушащего вещества.

    ООО «Завод Спецхимпродукт» выпускает продукцию в ассортименте, разнообразные модификации которой позволяют полностью перекрыть все возникающие потребности при ликвидации пожаров классов А и В.

    Общие определения

    для тушения пожаров – концентрированный водный раствор стабилизатора пены (поверхностно-активного вещества), образующий при смешении с водой рабочий раствор пенообразователя или смачивателя.

    Плёнкообразующий пенообразователь – пенообразователь, огнетушащая способность и устойчивость к повторному воспламенению которого определяется образованием на поверхности углеводородной горючей жидкости водной плёнки.

    Партия пенообразователя – любое количество единовременно изготовленного пенообразователя, однородного по показателям качества, сопровождаемого одним документом о качестве.

    Пена - дисперсная система, состоящая из ячеек – пузырьков воздуха (газа), разделённых плёнками жидкости, содержащей пенообразователь.

    Огнетушащая воздушно-механическая пена – пена, получаемая с помощью специальной аппаратуры за счёт эжекции или принудительной подачи воздуха или другого газа, предназначенная для тушения пожаров.

    Объёмные доли применения, раствор пенообразователя

    Концентрация рабочего раствора пенообразователя - содержание пенообразователя в рабочем растворе для получения пены или раствора смачивателя, выраженное в процентах.

    Методика получения пены различной концентрации:

    1. Для получения пеноконцентрата 6%:

    • К 5-ти частям воды добавить 1-у часть пеноконцентрата 1%
    • К 1-ой части воды добавить 1-у часть пеноконцентрата 3%

    2. Для получения пеноконцентрата 3%:

    • К 2-ум частям воды добавить 1-у часть пеноконцентрата 1%.

    Пример: Из 1 т ПО (6%) можно получить 16,6 т рабочего раствора. Такое же количество рабочего раствора можно получить из 0,17 т ПО (1%)

    Преимущества при использовании пеноконцентрата с высокими концентрациями ПАВ (объёмная доля применения 1% и ниже):

    1. Осуществляется экономия площадей для и снижение транспортных издержек при его перевозке

    2. Увеличивается запас возимого объёма огнетушащего вещества при доставке к месту пожара в штатном пенобаке пожарного автомобиля (при наличии соответствующих систем дозирования)

    3. Обеспечивается возможность оперативного приготовления 6% -го и 3%-го пеноконцентрата непосредственно на месте при отсутствии соответствующих систем дозирования (пеносмешения)

    Раствор пенообразователя

    Рабочий раствор пенообразователя (смачивателя) – водный раствор с регламентированной рабочей объёмной концентрацией пенообразователя (смачивателя). Рабочая концентрация пенообразователя составляет от 0,5% до 6%, смачивателя – от 0,1% до 3%.

    Интенсивность подачи рабочего раствора – количество водного раствора пенообразователя, подаваемого в единицу времени на единицу поверхности горючей жидкости.

    Методика получения рабочего раствора пенообразователя из пеноконцентрата с различными объёмными долями применения состоит в строгом выдерживании процентного соотношения воды и соответствующего пеноконцентрата при их перемешивании.

    Генераторы пены

    Установка пенного пожаротушения - установка пожаротушения, в которой в качестве огнетушащего вещества используют воздушно-механическую пену, получаемую из водного раствора пенообразователя

    Пеногенераторы для тушения подачей сверху – специальные устройства для получения огнетушащей воздушно-механической пены из рабочего раствора пенообразователя путём эжекции или принудительной подачи воздуха

    Система подслойного тушения пожара в резервуаре - комплекс устройств, оборудования и фторсодержащего пленкообразующего пенообразователя, предназначенного для подслойного тушения пожара нефти и нефте-продуктов в резервуаре.

    Высоконапорный пеногенератор - устройство для получения из водного раствора 1%, 3% или 6% - го пенообразователя воздушно-механической пены низкой кратности и ее подачи в слой нефти или нефтепродуктов в условиях противодавления, создаваемого столбом жидкости в установках подслойного пожаротушения резервуаров.

    Поскольку раствор пенообразователя может быть получен из пеноконцентратов с различными объёмными долями применения, то изначально необходимо руководствоваться техническими особенностями индивидуальной системы дозирования, конструктивно рассчитанной на конкретную концентрацию пенообразователя. Это обстоятельство необходимо обязательно учитывать при оформлении заявки на приобретение пенообразователя. Следует также принимать во внимание, что чем насыщеннее применяемый пеноконцентрат, тем ниже вероятность получения оптимального раствора пенообразователя, поскольку не всегда возможно обеспечить на практике равномерное перемешивание воды и высококонцентрированного пенообразователя в процессе дозирования. Полученный таким образом рабочий раствор пенообразователя в последующем позволит получить огнетушащую пену, но, как минимум, будет иметь место перерасход дорогостоящего пеноконцентрата.

    Кратность пены пенообразователя – безразмерная величина, равная отношению объёмов пены и раствора, содержащегося в пене.

    • Пена низкой кратности (до 20)
    • Пена средней кратности (от 21 до 200)
    • Пена высокой кратности (свыше 200)

    Кратность пенообразователя

    Кратность пенообразователя (полученной воздушно-механической пены) в равной мере зависит как от физико-химических свойств исходного пеноконцентрата общего или целевого назначения, так и от технических особенностей генераторов пены, имеющих специфические конструктивные ограничения. В настоящее время в мире сформировалась тенденция применения на практике пены только низкой или только высокой кратности. Это обусловлено повсеместным применением фторсодержащих пенообразователей, которые за счёт эффекта образования саморастекаемой водной плёнки (локальное пожаротушение на поверхности горючей жидкости) позволяют ограничиться пеной низкой кратности для быстрого достижения целей пожаротушения. В случаях вынужденного объёмного пожаротушения (авиационные ангары, трюмы речных (морских) судов и т.д.) тандем совместимых пеноконцентратов и пеногенераторов позволяют получить высокую кратность пены, заполняющую защищаемый объект и оперативно ликвидирующую пожар. На территории России получение и применение пены средней кратности, тем не менее, продолжает сохранять свою актуальность из-за массового применения на практике генераторов пены средней кратности.

    Устойчивость пены – способность пены сохранять первоначальные свойства.



    Пожарная пена

    Как одно из наиболее эффективных огнетушащих веществ, пожарная пена известна уже больше ста лет. Изобретение оказалось столь эффективным, что до сих пор не нашлось пене достойной замены в пожарном деле.

    Пена отлично противостоит горению моторного топлива, других нефтепродуктов и химических веществ, справляется с объемным тушением пожаров и с прочими сложными задачами. Пену применяют там, где использование воды неэффективно, нецелесообразно или даже опасно. Пенообразователь (средство, принимающее участие в создании пены) и профильное оборудование находится на вооружении пожарных, охраняющих не только предприятия химической и нефтехимической промышленности, но и аэродромы, крупные склады и другие ответственные объекты.

    Историческая справка

    Историю применения пены в теории и практике российских пожарных можно отсчитывать с 1904 года, года инженер, ученый и педагог Александр Лоран получил соответствующий патент. Изобретатель служил школьным учителем в Баку. Так как в этом городе находились нефтепромыслы, нефтяные пожары были ему хорошо известны. В результате ряда экспериментов Лоран получил устойчивую пену, созданную из сернокислого алюминия, бикарбоната натрия и воды. Пузырьки нового огнетушащего вещества без препятствий растекались по более тяжелой нефти и, буквально перекрыв кислород, останавливали огонь.

    Сложность создания такой химической пены была в необходимости использовать многокомпонентные смеси. Проблема решилась через несколько десятилетий, когда были изобретены смеси, которые вспенивались при воздействии струи воздуха.

    Классификация пожарной пены

    Пена, как и полагается ей согласно названию, представляет собой пузырьки воздуха в пленке, созданной жидкостью. Соответственно, пенообразователь – вещество, которое применяется для создания пены.

    Если говорить о способах классификации пены, то следует отметить два основных:

    • способ создания;
    • кратность.

    Как отмечено выше, по способу создания пену разделяют на химическую, и на получаемую под воздействием воздуха в специальных устройствах. Химическая – это результат взаимодействия определенного набора компонентов. Воздушно-механическая пена - результат смешивания воздуха с так называемым пеноконцентратом.

    Преимущество пожарные отдают воздушно-механической пене, в связи с ее отличными огнетушащими характеристиками, легкостью в обращении и с возможностью регулирования кратности.

    Кратность пены представляет собой соотношение объема пеноконцентрата (или других исходных веществ) к объему полученной пены. По кратности пены различают:

    • пеноэмульсию (коэффициент меньше 3);
    • пену низкой кратности (коэффициент находится в диапазоне 3-20);
    • пену средней кратности (коэффициент находится в диапазоне 20-200);
    • пену высокой кратности (коэффициент больше 200).

    Существенное значение имеет и классификация пенообразователей . Эти вещества синтетического происхождения принято делить на две большие группы:

    • с содержанием фтора;
    • с содержанием углеводородов.

    Каждый из пенообразователей имеет предпочтительную область применения. По области применения пенообразователи делят на:

    • поверхностные, предназначенные для тушения пожаров на поверхности жидкостей и на других плоскостях;
    • локально-поверхностные, которыми укрощают огонь на определенных ограниченных поверхностях;
    • общеобъемные, предназначенные для нагнетания в закрытые помещения или резервуары;
    • локально-объемные, которыми заполняют внутреннюю часть оборудования, небольшие помещения и т.п.;
    • комбинированные, обладающие симбиозом характеристик описанных выше видов пенообразователей.

    Особенности применения огнетушащей пены

    За несколько десятилетий использования и усовершенствования огнетушащей пены определились и особенности ее применения. Так, пеной с невысоким уровнем кратности целесообразно поливать горящие поверхности. Она хорошо держит целостность, не пропускает горячие газы, снижает температуру горящей поверхности. Такая пена подается мощной струей даже на достаточно большие расстояния.

    Пену средней и высокой кратности эффективно используют для изоляции объемов, для тушения пожаров в таких объемах, для вытеснения загрязненного воздуха из помещений, из вентиляционных систем и других объектов. В случае необходимости пену применяют вместе с другими огнетушащими веществами, в том числе и с порошковыми. Широкое распространение получило применение пожарной пены для покрытия взлетно-посадочных полос на случай экстренной посадки воздушного судна.

    Статью прислал: beetle

    Поделиться: