Блок питания из эконом-лампы. Как сделать блок питания из эконом лампы Схема 100 ваттной энергосберегающей лампы


Блок Питания из энергосберегающей лампы.


В случае выхода из строя электронного балласта, его можно отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают. Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя.

Посмотрим, что там на ней есть интересного.


- Диоды - 6 шт. Высоковольтные (220 Вольт) обычно маломощные.

Дроссель. Убирает помехи по сети.

Транзисторы средней мощности обычно MJE13003.

Высоковольтный электролит. Емкость небольшая (4,7 мкФ), на 400 вольт.

Конденсаторы разной емкости, все на 250 вольт.

Два высокочастотных трансформатора.

Несколько резисторов.

Назначение элементов схемы импульсного блока питания.

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения, также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Отличие схемы лампы от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп.

Для предобразования схемы эконом лампы в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые нужно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе эконом лампы с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания.

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока.

Блоки питания, собранные по этим схемам почти всегда прощают ошибки в расчётах.

Намотать импульсный трансформатор не так уж и сложно.

Ёмкость входного фильтра и пульсации напряжения.

Во входных фильтрах электронных балластов, из-за экономии, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz .

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить более мощным.

Если требуется компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах установлены миниатюрные конденсаторы без опознавательных знаков, их ёмкость примерно 100µF х 350V.


Блок питания мощностью 20 Ватт.

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор.

Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода , то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода.

Был использован провод МГТФ (многожильный провод во фторопластовой изоляции).

Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание!

Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Обмотка дросселя покрыта синтетической плёнкой,

хотя часто бывает, что обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона , используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное.

Количество витков подбирается экспериментальным путём, (их будет немного).

Таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2 и увеличить ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

В данном электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, рассчитана на крепление к радиатору при помощи фасонных пружин.

Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже.

Лучше их заменить транзисторами 13007 поз.2

с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами.

Кроме того, 13007 имеют в несколько раз большие предельно-допустимые токи. Можете смело прикручивать оба транзистора на один радиатор.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2 ,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика ). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Изображение соединения транзистора с радиатором:

1. Винт М2 ,5.

2. Шайба М2 ,5.

3. Шайба изоляционная М2 ,5.

4. Корпус транзистора.

5. Прокладка – отрезок трубки (кембрика ).

6. Прокладка – слюда, керамика, фторопласт и т.д.

7. Радиатор охлаждения.

Внимание!

Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности !

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодными . Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.

2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода .

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки , на которых падение напряжения в два-три раза меньше.

Пример.

Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8 (Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32 (Ватт).

Обратите внимание на это, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой.

Тем более что при ручной намотке можно просто намотать обмотку в два провода.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы нагревается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности . Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Как наладить импульсный блок питания?

Блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода , либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС , то нужно уменьшить мощность нагрузки.


Начнём с определения.

ЭПРА (Электронный Пуско Регулирующий Аппарат) – это устройство, предназначенное для поджига газоразрядных ламп и поддержания их в рабочем состоянии.

Соответственно, горение таких ламп без ЭПРА невозможно, а, значит, этот блок имеется во всех светильниках, которые работают с лампами на основе инертных газов, или даже в самих лампах (например, в энергосберегающих неоновых со стандартными цоколями).

Рассмотрение преимуществ и недостатков ламп мы оставим на потом, а сейчас остановимся подробнее на блоке их питания.

Основные компоненты ЭПРА

В составе подавляющего большинства таких устройств имеются:

  • Фильтр (могут отсекаться помехи из сети питания, или, наоборот, создаваемые самим блоком питания).
  • Выпрямитель.
  • Корректор мощности.
  • Выходной сглаживающий фильтр.
  • Инвертор.
  • Балласт.

Однако, в целях экономии (габаритов или конечной стоимости) некоторые производители могут убирать те или иные блоки.

Блоки могут реализовываться из самостоятельных радиоэлементов или на основе специальных микросхем.

Применение

Даже при беглом взгляде на состав ЭРПА становится понятно, что перед нами – готовый импульсный блок питания.

И, например, если светильник больше эксплуатироваться по назначению не будет, то почему бы не использовать из него пускорегулирующий блок в других целях?

Например, можно собрать компактный блок питания светодиодных лент с минимумом дополнительных деталей или зарядное устройство для аккумуляторов.

Переделка ЭПРА из энергосберегающей лампы

Так выглядит обычная люминесцентная лампа с цоколем Е27.

Рис. 1. Люминесцентная лампа с цоколем Е27

А так выглядит её принципиальная схема.

Рис. 2. Принципиальная схема люминесцентной лампы с цоколем Е27

Красным выделены элементы, которые необходимы для запуска колбы (они нам не понадобятся).

Физически блок выглядит так (после разбора лампы).

Рис. 3. Блок лампы с элементами

Практически единственное отличие от ИБП – дроссель L5. Его нужно заменить на трансформатор. Сделать это можно двумя способами:

  • Намотать на него вторичную обмотку;
  • Выпаять и заменить на подходящий трансформатор (обязательно импульсный).

Здесь сразу необходимо оговориться о мощности такого ИБП.

Примечание. Все элементы схемы для достижения компактности готового изделия подобраны строго под определённые выходные параметры. А значит, без значительной переделки и применения радиаторов / других теплоотводов выходную мощность повысить не получится. Лучше всего, если она останется в пределах исходной мощности лампы!

То есть, если лампа на 15 Вт, то при выходном напряжении в 12 В сила тока на выходе не должна быть выше 1 А (12·1= 12 Вт).

Путь с минимальными трудозатратами - конечно, замена на подходящий.

Перемотка

Штатный дроссель имеет небольшие габариты, что существенно затрудняет перемотку. И даже после переделки впаять его на место вряд ли получится (габариты увеличатся). Хотя при должной сноровке можно-таки разобрать дроссель, изолировать первичную обмотку стеклотканью и намотать 10-20 витков (толщина провода до 0,5 мм отлично подойдёт).

Переделанная схема может иметь вид как на схеме ниже.

Рис. 4. Переделанная схема

Конденсаторы С9 – 0,1 мкФ, С10 – 470 мкФ. Диоды или диодный мост должны быть импульсными.

Дополнительный трансформатор

ЭРПА можно дополнить своим трансформатором. Например, как на схеме ниже.

Рис. 5. Схема дополненная трансформатором

Здесь не обошлось без мелких переделок основной схемы. Был заменён:

  • Резистор R0 (минимум 3 Вт, можно включить два по 10 Ом, 2 Вт параллельно).
  • Конденсатор C0 (напряжение – до 350 В).
  • Транзисторы 13007 (VT1 и 2, ставятся на радиаторы с площадью минимум 20 см 2).

Трансформатор можно взять готовый или намотать на основе дросселя из другой лампы, например, большей по мощности.

В качестве основы можно использовать ферритовое кольцо (2000НМ - 28 х 16 х 9мм или больше). В данной схеме использовалось кольцо с диаметрами 40 и 22 мм (внешний/внутренний), толщина – 20 мм. Первичная обмотка – 63 витка (ПЭЛ 0,85 мм2), вторичные – по 12 витков (провод тот же).

На схеме обозначена симметричная намотка вторичных обмоток. Её можно заменить одной, но на выходе должен быть диодный мост (как на первой схеме).

Схема 2 позволяет довести мощность блока питания до 100 Вт.

Больший ток может понадобиться для питания галогеновых ламп или для других задач.

Без подключённой нагрузки включать этот блок питания нельзя! Обратите внимание на показатели рассеиваемой мощности тестовой нагрузки.

Это, наверное, ключевой вопрос в переделке.

Алгоритм действий таков:

1.На дроссель необходимо намотать удобное количество витков (10/20/30 и т.п.).

2.Подключить нагрузку (это может быть резистор с рассеиваемой мощностью 30 Вт и больше).

3.Запитать схему и снять измерения на выходе (то есть на нагрузке).

4.Теперь легко понять какое напряжение приходится на 1 виток (имеющееся напряжение делите на количество намотанных витков).

6.Наматываете своё количество витков.

RadioRadar


Дата публикации: 28.11.2018

Мнения читателей
  • Борис3 / 28.11.2019 - 15:23
    Практически изложенный материал повторяется на разных сайтах. На одном пишут, что R2, C11 и C8 ускоряют запуск- сомневаюсь т.к. это подключено к выходу. Здесь тоже ошибка: до 100 Вт рис.5, а не схема 2. Сомневаюсь, что из 20 Вт лампы можно только усилив элементы и намотав трансформатор получить 100 Вт- в разы увеличится ток TV1 и напряжения на базе соответственно, а превышение этого напряжения 8 В приведёт к пробою транзисторов без принятия дополнительных мер. Нельзя дроссель заменить трансформатором, как написано в начале статьи- не хватит тока первички для работы TV1, а если уменьшить индуктивность как у дросселя, то выйдет из строя всё под нагрузкой когда индуктивность снижается.

Перед вами очередная конструкция с применением микросхемы 555. Устройство представляет из себя-DC-AC преобразователь напряжения, который предназначен для питания энергосберегающих ламп от пониженного напряжения. Диапазон входных напряжений 8-18Вольт (оптимальное-12 Вольт). На выходе трансформатора образуется переменное напряжение высокой частоты порядка 400 Вольт. Это простой и стабильный однотактный преобразователь напряжения, который может быть использован в походных ситуациях или в автомобиле.

Несмотря на свои компактные размеры и простоту конструкции, преобразователь развивает достаточно высокую мощность, которая напрямую зависит от конкретного типа используемого ключа. С применением мощного полевого транзистора серии IRF3205 мощность доходит до 70 Ватт. В моем случае использован транзистор IRFZ48, с ним мощность не более 50 ватт. Не советуется поднимать мощность более 70 ватт, поскольку нужно будет еще раз рассчитать параметры импульсного трансформатора.


Таймер 555 работает в качестве генератора прямоугольных импульсов. Импульсы усиливаются мощным полевым ключом. Транзистор нужно установить на теплоотвод. Импульсный трансформатор состоит всего из двух обмоток. Первичная обмотка состоит из 7 витков. Для удобности намотки было использовано 3 жилы провода с диаметром 0,5мм каждая. Такое решение экономит пространство. Дальше поверх первичной обмотки мотается-повышающая. Эта обмотка состоит из 80 витков провода с диаметром 0,2мм. Обмотку можно мотать навалом без дополнительных изоляционных слоев.


Сердечник был использован от старого блока питания АТХ. Для начала с платы блока нужно выпаять трансформатор и разобрать его. Половинки феррита приклеены друг к другу намертво, поэтому их нужно чуть погреть. Греть нужно аккуратно (зажигалкой или мощным паяльником).


После, нужно снять все обмотки и мотать нужные. Такой однотактный преобразователь может питать довольно мощные неоновые трубки до 50 ватт. Преобразователь также может быть использован для питания и других электрических устройств, в том числе расчитанных и на постоянное напряжение, только в этом случае на выходе нужен выпрямитель.

Энергосберегающие лампы активно позиционировались как замена низкоэкономичным и ненадежным лампам накаливания. Постепенное снижение цен на «экономки» привело к тому, что они получили практически повсеместное распространение.

Самый большой минус светодиодов – их высокая стоимость. Не удивительно, что многие занимаются переделкой энергосберегающих ламп в светодиодные, используя по максимуму доступную и недорогую элементную базу.

Теоретическое обоснование

Светодиоды работают при низком напряжении – порядка 2-3В. Но самое главное, для нормальной работы требуется не стабильность напряжения, а стабильность тока , по ним протекающего. При понижении тока снижается яркость свечения, а превышение приводит к выходу из строя диодного элемента. Полупроводниковые устройства, к которым относятся светодиоды, имеют ярко выраженную зависимость от температуры. При нагреве сопротивление перехода падает и возрастает прямой ток.

Простой пример: источник стабильного напряжения выдает 3В, при токе потребления светодиода 20мА. При повышении температуры напряжение на светодиоде остается неизменным, а ток возрастает вплоть до недопустимых значений.

Для исключения описанной ситуации, источники света на полупроводниках запитывают от стабилизатора тока, он же драйвер. По аналогии с люминесцентными лампами драйвер иногда называют балластом для светодиодов.

Наличие входного напряжение 220В вместе с требованием стабилизации тока приводит необходимости создания сложной схемы питания светодиодных ламп.

Практическая реализация идеи

Простейший источник питания светодиодов от сети 220В имеет следующий вид:


На приведенном рисунке резистор обеспечивает падение излишка напряжения питающей сети, а диод, включенный параллельно, защищает LED элемент от импульсов напряжения обратной полярности.

Как видно из рисунка, что можно проверить расчетами, требуется гасящий резистор большой мощности, выделяющий во время работы много тепла.

Ниже приведена схема, где вместо резистора используется гасящий конденсатор


Использование в качестве балласта конденсатора позволяет избавиться от мощного резистора и повысить КПД схемы. Резистор R1 ограничивает ток в момент включения схемы, R2 служит для быстрого разряда конденсатора в момент выключения. R3 дополнительно ограничивает ток через группу светодиодов.

Конденсатор С1 служит для гашения излишков напряжения, а С2 сглаживает пульсации питания.

Диодный мост образован четырьмя диодами типа 1N4007, которые можно выпаять из негодной энергосберегающей лампы.

Расчет схемы произведен для светодиодов HL-654H245WC с рабочим током 20мА. Не исключено применение аналогичных элементов с таки током.

Так же, как и в предыдущей схеме, здесь не обеспечивается стабилизация тока. Чтобы исключить выход светодиодов из строя, в схеме балласта для светодиодных ламп емкость конденсатора С1 и сопротивление резистора R3 выбраны с запасом, чтобы при максимальном входном напряжении и повышенной температуре светодиодов, ток через них не превышал допустимых значений. В нормальном режиме ток через диоды несколько менее номинального, но на яркости лампы это практически не сказывается.

Недостаток подобной схемы заключается в том, что использование более мощных светодиодов потребует увеличение емкости гасящего конденсатора, имеющего большие габариты.

Аналогично выполняется питание светодиодной ленты от платы энергосберегающей лампы. Важно, чтобы ток светодиодной ленты соответствовал линейке светодиодов, то есть 20мА.

Используем драйвер энергосберегающей лампы

Более надежна схема, когда используется драйвер из энергосберегающей лампы с минимальными переделками. В качестве примера на рисунке показана переделка энергосберегающей лампы мощностью 20Вт для питания мощного светодиода с током потребления 0.9А.


Переделка светодиодной лампы для питания светодиодов

Переделка электронного балласта для светодиодных ламп в данном примере минимальна. Большая часть элементов в схеме оставлена от драйвера старой лампы. Изменениям подвергся дроссель L3 и добавлен выпрямительный мост. В старой схеме между правым выводом конденсатора С10 и катодом диода D5 была включена люминесцентная лампа.

Теперь конденсатор и диод соединены напрямую, а дроссель используется в качестве трансформатора.

Переделка дросселя заключается в намотке вторичной обмотки, с которой и будет сниматься напряжение для питания светодиода.

Не разбирая дроссель, на него нужно намотать 20 витков эмалированного провода диаметром 0.4мм. При включении напряжение холостого хода вновь выполненной обмотки должно составлять около 9.5–9.7В. После подключения моста и светодиода, амперметр, включенный в разрыв питания LED элемента, должен показывать около 830–850мА. Большее или меньшее значение требует коррекции количества витков трансформатора.

Диоды 1N4007 или аналогичные, можно использовать от другой неисправной лампы. Диоды в экономках используются с большим запасом по току и напряжению, поэтому выходят из строя крайне редко.

Все приведенные схемы светодиодных драйверов из энергосберегающей лампы, хоть и обеспечивают низковольтное питание, имеют гальваническую связь с сетью переменного тока, поэтому при работе по отладке нужно соблюдать меры предосторожности.

Наилучшим и самым безопасным будет использование при работе разделяющего трансформатора с одинаковыми первичной и вторичной обмотками. Имея на выходе те же самые 220В, трансформатор будет обеспечивать надежную гальваническую развязку первичной и вторичной цепей.

Ассортимент современных магазинов очень велик. С каждым днем появляются какие-либо новинки. Это касается и приборов для освещения, которые становятся более совершенными. Главные отличия между ними в яркости, экономических характеристиках и создание необходимого комфорта для глаз.

Большинство производителей пытались создать изделие подобное до обычной лампы накаливание, только с более усовершенствованными функциями. Которые позволят уменьшить потребность в электричестве, при этом степень их нагревания и влияние на окружающую среду. Поэтому мир увидел новый вид ламп светодиодных и энергосберегающих, которые ничем не уступают характеристикам стандартных изделий и имеют ряд преимуществ.

Многие мастера пытаются создать блок питания из . Ведь стоимость некоторых изделий существенно завышена. А для изготовления блока питания своими руками не понадобится много времени и денег.

Как из энергосберегающей лампы сделать блок питания

Импульсный блок питания из энергосберегающей лампы создать достаточно просто. Достаточно обладать базовыми знаниями, которые понадобятся нам в процессе создания данного изделия.

Для того, чтобы создать вам понадобятся такие материалы:

  • Старая лампа. Подойдет сгоревшая, нерабочая лампа.
  • Стеклотекстолит для соединения деталей. Существуют другие варианты для прикрепления светодиодов без использования пайки. Можно пользоваться любым другим известным вам вариантом.
  • Все необходимые элементы, которые есть в специальной схеме, в которых обязательно есть светодиоды. Для того, чтобы максимально сэкономить можно использовать любые подручные средства. Также покупать их лучше на рынке радиодеталей, где цены доступнее, чем в магазине.
  • Конденсаторы необходимых объемов, которые подойдут для максимального напряжения в 400 вольт.
  • Необходимое количество светодиодов.
  • Клей для фиксирования изделия.

Какая лампа нам понадобится

Блок питания из балласта энергосберегающих ламп – отличный вариант для создания дешевого и качественного освещения своими руками, без больших затрат. Таким образом можно заменить все лампы в вашем доме.

Чтобы создать БП из энергосберегающей лампы своими руками, для начала необходимо вырезать из текстолита круг по размеру изделия. Затем нужно нарисовать на этой форме круглые полоски. Для этого можно использовать любые подручное средства, которое есть у вас в хозяйстве. В этом деле важна точность и ровность линий. Ведь по этой схеме будут крепиться светодиоды. Пока изделие сохнет, можно подготовить другие необходимые детали для создания блока питания. Среди которых – пайка всех необходимых деталей, сверление отверстий с помощью дрели, которые нужны для крепления, скрепление всех элементов между собой. Крепятся все детали на специальный устойчивый к разным температурным режимам клей.

Для того, чтобы создать БП из энергосберегающей лампы вам не понадобится много времени. Сама процедура не займет больше часа. При этом вы сможете получить качественное изделия, которое поможет вам экономить на электроэнергии.

Также существует множество других способов для создания БП из энергосберегающей, которые полностью доступные и под силу практически каждому.

Поделиться: